การใช้โปรแกรม SPSS ในการวิเคราะห์ข้อมูลทางสถิติเพื่อการวิจัย

SPSS ข้อมาจาก Statistical Package for Social Science

โปรแกรม SPSS ที่ใช้ในการอบรมครั้งนี้จะใช้ SPSS for Windows Version 12.0

การติดตั้งโปรแกรม

- 1. นำแผ่นซีดีโปรแกรม SPSS for Windows Version 12.0 ใส่ซีดีรอมใดร์ฟ
- 2. ดับเบิลคลิก My Computer
- ดับเบิลคลิกซีดีรอมไดร์ฟ
- 4. ดับเบิลคลิกโฟลเดอร์ SPSS v12.0
- 5. ดับเบิลกลิกไอคอน SPSS12.exe
- 6. คลิกปุ่ม Next แล้วรอ
- 7. คลิกปุ่ม Next
- 8. คลิกตรงวงกลมหน้า I accept the terms in the license agreement
- 9. คลิกปุ่ม Next 6 ครั้ง
- 10. คลิกปุ่ม Install แล้วรอ
- 11. คลิกปุ่ม Finish
- 12. คลิก Start -> Run
- 13. ตรงบรรทัด Open ให้พิมพ์ C:\Program Files\SPSS\licrenew.exe กดปุ่ม OK
- 14. ปรากฏหน้าจอ

ให้พิมพ์ 30066743322 กด Enter

ให้พิมพ์ 30066743322 กด Enter

กด Enter

การเรียกใช้โปรแกรม

กลิก Start -> All Programs -> SPSS for Windows -> SPSS 12.0 for Windows ถ้าปรากฏหน้าจอ What would you like to do? ให้กลิกสี่เหลี่ยมด้านล่างซ้ายให้มีเครื่องหมายถูก แล้ว กลิกปุ่ม OK กลิกปุ่ม Cancel

หมายเหตุ กรณีปรากฏหน้าจอ

SPSS	12.0 for Windows
1	Your license for SPSS for Windows will expire at the end of the current month. If you don't want to see this message again, run expoff.bat in the SPSS directory.
	ОК

ถ้าต้องการไม่ให้ปรากฏหน้าจอนี้

- 1. ดับเบิลคลิก My Computer
- 2. ตรงบรรทัด Address ให้พิมพ์ C:\Program Files\SPSS แล้วกด Enter
- 3. เลื่อน Vertical Scroll Bar จนปรากฏชื่อไฟล์ expoff.bat
- 4. ดับเบิลคลิกตรงไฟล์ expoff.bat
- 5. ปิดหน้าจอ

Windows ของ SPSS มี 5 ประเภท

1.	Data	ไฟล์นามสกุล sav	ใช้เพิ่ม/แก้ใข/ลบ ข้อมูล หรือ เรียกข้อมูล
			ที่ป้อนจากโปรแกรมอื่นๆ
2.	Output	ไฟล์นามสกุล spo	เพื่อให้แสดงผลลัพธ์ในรูปแบบ Graphics
3.	Syntax	ไฟล์นามสกุล sps	ใช้พิมพ์คำสั่งหาค่าทางสถิติ แทนการใช้เมนู
4.	Draft Output	ไฟล์นามสกุล rtf	เพื่อให้แสดงผลลัพธ์ในรูปแบบ Text
5.	Script	ไฟล์นามสกุล sbs	ใช้เขียนโปรแกรมกำสั่งหาก่าทางสถิติ
	a av	97	<u> </u>

หมายเหตุ ในการอบรมใช้ Windows เฉพาะข้อ 1 และข้อ 2 ส่วนคำสั่งหาค่าทางสถิติจะใช้เมนู

การป้อนข้อมูลจากหน้าจอ Data มีขั้นตอน

- 1. เปิดหน้าจอ SPSS Data Editor เลือกเมนู File -> New -> Data
- 2. การกำหนดชื่อและรายละเอียดของตัวแปร จากหน้าจอ Variable View
- 3. ป้อนข้อมูล จากหน้าจอ Data View
- 4. บันทึกข้อมูล เลือกเมนู File -> Save

ต้องการให้หน้าจอ Data แสดงภาษาไทย ให้การแก้ไขฟอนต์ ดังนี้

เลือกเมนู View -> Fonts

Font			? 🔀
Font: AngsanaUPC AngsanaUPC Ariabic Transparent O Arial Black O Arial Black O Arial Narrow O Arial Unicode MS T Batang	Font style: Regular Regular Italic Bold Bold Italic	Size: 16 16 18 20 22 24 26 28 •	OK Cancel
	Sample AaBbอักษร [*] Script:	ไทย	
] Thai	-	

เลือก Font และ Size ตามที่ต้องการ แล้วคลิกปุ่ม OK

หมายเหตุ ชื่อฟอนต์ที่เป็นภาษาไทยส่วนใหญ่จะลงท้ายด้วย UPC

ตัวอย่างข้อมูล ชื่อตัวแปร sex ประเภทตัวเลข ความกว้าง 1 ไม่มีจุดทศนิยม เลเบล เพศ

การกำหนดชื่อและรายละเอียดของตัวแปร จากหน้าจอ Variable View

ที่หน้าจอ SPSS Data Editor เรียกหน้าจอ Variable View ทำได้ 2 วิธี

- 1. ดับเบิลคลิกตรงคอลัมน์ของบรรทัดแรก
- 2. คลิกแถบ Variable View ที่อยู่ด้านล่าง

<u>آ</u> ا	🖥 Untitled - SPSS Data Editor										
File	Edit Vie	ew Data	a Transfor	m Analyze	Graphs	Utilities A	Ndd-ons W	'indow Helj	P		
2	2日日 - 11日 - 11日 - 11日 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 -										
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	
1	sex.	Numer	1	0	เพศ	{1, ชาย}.	9	4	Right	Scale	
2											
3	3										

- 1. Name ชื่อตัวแปร ให้พิมพ์ตรงกอลัมน์ Name เช่น Sex
- 2. Type ประเภทของตัวแปร

Numeric Comma Width: OK Cancel Dot Decimal Places: O Help Date Dollar Custom currency String	Variable Type		? 🗙
o sung	 Numeric Comma Dot Scientific notation Date Dollar Custom currency String 	Width: 1 Decimal Places: 0	OK Cancel Help

เลือก Numeric Width=1 Decimal Places=0 คลิกปุ่ม OK

- Label กำหนดข้อความขยายชื่อตัวแปร เพื่ออธิบายชื่อตัวแปรและแสดงออกทางผลลัพธ์
 ให้พิมพ์ตรงกอลัมน์ Label เช่น เพศ
- 4. Values กำหนดคำอธิบายให้กับค่าตัวแปร

Value Labels	? 🔀
Value Labels Value: Value Label: Add 1 = "ชาย" 2 = "พญิง" Remove	OK Cancel Help

5. Missing กำหนดค่าที่ไม่นำไปวิเคราะห์ มี 2 แบบ

5.1 User Missing ผู้วิจัยเป็นผู้กำหนด เช่น 9, 99, 999, ...

Missing Values	? 🗙
C No missing values	OK
Discrete missing values	Cancel
9 1	Help
C Range plus one optional discrete missing v	alue
Low: High:	
Discrete value:	

5.2 System Missing โปรแกรมจะกำหนดให้เอง

 Column จำนวนความกว้างของคอลัมน์ คือจำนวนความกว้างมากสุดของ ค่าตัวแปร หรือ ชื่อตัวแปร หรือ label ตัวแปร

จากตัวอย่าง ชื่อตัวแปร และ label ตัวแปร มีความกว้างมากสุดเท่ากับ 3

ให้พิมพ์ 4 (ความกว้างมากสุดเท่ากับ 3 บวกเผื่อไว้ 1)

- 7. Align ให้แสดงค่าตัวแปร ชิดซ้าย กึ่งกลาง ชิดขวา
- 8. Measure ระดับการวัดของข้อมูล
 - 7.1 Scale (Interval, Ratio)
 - 7.2 Ordinal
 - 7.3 Nominal

ให้กำหนดชื่อและรายละเอียดของตัวแปรให้กรบทุกตัว

ป้อนข้อมูล จากหน้าจอ Data View

🛅 Untit	🛙 Untitled - SPSS Data Editor							
File Edit	View	Data Transf	orm Analyze	Graphs Utili	ties Add-ons	Window He	P	
28	e	•	🏪 📴 🏘		1	<u>s</u>		
1:								
	sex.	var	var	var	var	var	var	
1	1							
2	2							
▲ ▶ \ D i	Data View (Variable View /							

Data View เป็นแบบตาราง การป้อนข้อมูลจะคล้ายกับ Excel

บรรทัดแรก จะเป็นชื่อตัวแปร

บรรทัดต่อไป จะเป็นข้อมูล

ดูจำนวนข้อมูล ไปรายการสุดท้าย กดปุ่ม Ctrl+End

กลับไปรายการแรก กคปุ่ม Ctrl+Home

การ Show Label (View -> Value Labels)

การนำข้อมูลเข้าจาก Excel

ให้ก็อปปี้ไฟล์ทุกไฟล์ที่อยู่ในโฟลเดอร์ train_spss\data จากแผ่นซีดี ไปเก็บไว้ที่โฟลเดอร์ C:\train_spss\data เงื่อนไข

- 1. ไฟล์ที่จะนำเข้าต้องไม่เปิดค้างไว้ที่ Excel
- 2. ข้อมูลที่ป้อนใน Excel ต้องเป็นแบบ Numeric ไม่เป็นแบบ String เช่น '1
- บรรทัดแรก ต้องเป็นชื่อตัวแปร บรรทัดต่อที่ 2 เป็นต้นไปจะเป็นข้อมูล

การนำเข้า

1. เลือกเมนู File -> Open -> Data

Open File			? 🔀
Look in: 🔀	Data		📸 🎟 -
atinybus.xls			
File name:	tinybus.xls		Open
Files of type:	Excel (*.xls)	•	Paste
			Cancel

Look in เถือก C:\train_spss\data\tinybus.xls

คลิกปุ่ม Open

คลิกปุ่ม OK

2. เถือกเมนู File -> Save As

: Save Data	As		? 🔀		
Save in: 🗀	Data		. 💣 ∙		
DATA10A. DATA11.5. DATA12A. DATA12B.: DATA12B.: DATA13A. DATA13B.:	SAV DATA14A.SAV AV DATA15A.SAV SAV DATA15B.SAV SAV DATA15B.SAV SAV DATA16A.SAV SAV DATA16B.SAV SAV DATA16B.SAV SAV DATA17A.SAV	DATA17B.SAV DATA18A1.SAV DATA18A1.SAV DATA18A2.SAV DATA18A3.SAV DATA18AX.SAV DATA18B.SAV	DATA18C.SAV DATA19A.SAV DATA19B.SAV DATA19B.SAV DATA19C.SAV DATA20.SAV DATA20.SAV		
<]	>		
	Keeping 22 of 22 variables	s.	Variables		
File name:	tinybus		Save		
Save as type:	SPSS (*.sav)	-	Paste		
	Write variable names to spreadsheet				
	Save value labels where defined instead of data values.				
Save value labels into a .sas file					
Save as type เลือก SPSS (*.sav)					
Save in	n เลือกชื่อ Drive ตามด้วยชื่อพื้นที่ใน Harddisk เช่น C:\train_spss\da				

File name พิมพ์ชื่อไฟล์ เช่น tinybus

คลิกปุ่ม Save

หลังจากที่ได้ไฟล์ tinybus.sav สิ่งแรกที่ต้องทำคือ กำหนดรายละเอียดแต่ละตัวแปร

File of type เลือก Excel (*.xls)

การเปลี่ยนแปลงข้อมูลก่อนนำไปวิเคราะห์ข้อมูลทางสถิติ

- 1. การเปลี่ยนแปลงเกี่ยวกับตัวแปร
- 2. การสร้างตัวแปรใหม่จากการคำนวณและเงื่อนไข
- 3. การเลือกข้อมูลมาทำการวิเคราะห์
- 4. การคำเนินการอื่นๆ กับข้อมูล

1. การเปลี่ยนแปลงเกี่ยวกับตัวแปร

ต้องการเปลี่ยนแปลงรายละเอียดตัวแปรใดให้ ดับเบิลคลิกที่ชื่อตัวแปร จากหน้าจอ Data View

ต้องการเปลี่ยนค่าตัวแปร ทำใค้ 2 ลักษณะ

การเปลี่ยนค่าในตัวแปรเดิม วิธีนี้ไม่เป็นที่นิยม

การเปลี่ยนค่าและสร้างเป็นตัวแปรใหม่

ที่หน้าจอ Data View เลือกเมนู Transform -> Recode -> Into Different Variables ตัวอย่าง เปลี่ยนค่าตัวแปร sex จาก 1 เป็น 3, 2 เป็น 4 สร้างตัวแปรใหม่ชื่อ newsex

Recode into Diffe	ent Variables			×
 ♠ NO. [NO] ♠ AGE ♠ EDU ♠ INCOME ♠ OCCO ♠ STATUS ♠ OFTEN ♠ DAY 	Numeric Va	riable -> Output Varial wsex	ole:	Output Variable Name: newsex Label: ตัวแปรเพศใหม่ Change
 LUNG TIME LIKE PRICE PERDAY V14 V15 	Old an	d New Values	OK Paste	Reset Cancel Help

คอลัมน์ซ้ายของหน้าจอเลือกตัวแปร SEX คลิกปุ่ม 🕩

คอถัมน์ Output Variable

Name พิมพ์ newsex Label พิมพ์ ด้วแปรเพศใหม่ คลิกปุ่ม Change

คลิกปุ่ม Old and New Values

Recode into Different Variables: Ol	Recode into Different Variables: Old and New Values				
Old Value Value: [System-missing	New Value Image: Construction of the second seco				
C System- or user-missing	Old> New:				
C Range: C Range: Lowest through	Add 1> 3 2> 4 Remove				
C Range: through highest	Output variables are strings Width: 8 Convert numeric strings to numbers ('5'->5)				
C All other values	Continue Cancel Help				

คอถัมน์ Old Value Value

พิมพ์ 1 คอลัมน์ New Value Value พิมพ์ 3 คลิกปุ่ม Add พิมพ์ 2 คอลัมน์ New Value Value พิมพ์ 4 คลิกปุ่ม Add

กอถัมน์ Old Value Value คลิกปุ่ม Continue

คลิกปุ่ม OK

ตัวแปรใหม่ newsex จะต่อจากคอลัมน์สุดท้าย

้ตัวอย่าง เปลี่ยนค่าตัวแปร age โดยกำหนดเป็นช่วง และสร้างตัวแปรใหม่ชื่อ newage

- 1 เท่ากับ น้อยกว่า 25 ปี
- 2 เท่ากับ 25 ปี ถึง 34 ปี
- 3 เท่ากับ 35 ปี ถึง 44 ปี
- 4 เท่ากับ ตั้งแต่ 45 ปีขึ้นไป

Recode into Different Variables: Old and New Values						
Old Value © Value:	New Value Value: System-missing					
C System-missing	 Copy old value(s) 					
C System- or user-missing	Old> New:					
Range: through Range: Lowest through	Add Lowest thru 25> 1 25 thru 34> 2 35 thru 44> 3 Ghange 45 thru Highest> 4					
Range: through highest All other values	Output variables are strings Width: 8 Convert numeric strings to numbers ('5'->5) Continue Cancel Help					
เลือก Range Lowest through พิมพ์ 25	Value พิมพ์ 1 คลิกปุ่ม Add					
เลือก Range พิมพ์ 25 through พิมพ์ 34	Value พิมพ์ 2 คลิกปุ่ม Add					
เลือก Range พิมพ์ 35 through พิมพ์ 44	Value พิมพ์ 3 คลิกปุ่ม Add					
เลือก Range พิมพ์ 45 through highest	Value พิมพ์ 4 คลิกปุ่ม Add					
คลิกปุ่ม Continue						

คลิกปุ่ม OK

2. การสร้างตัวแปรใหม่จากการคำนวณและเงื่อนไข

ตัวอย่าง เปิดไฟล์ DATA.sav สร้างตัวแปรใหม่ชื่อ newincome โดยเพิ่มรายได้ขึ้น 10% จากตัวแปร income เฉพาะเพศหญิง

เลือกเมนู Transform -> Compute

Compute Variable	×
Target Variable: newincome =	Numeric Expression:
Type & Label	
 Image in the sex 	+ <> 7 8 9 Functions: - <=
 Inke v6a v6b v6c v6d 	If sex = 2 OK Paste Reset Cancel Help

Target Variable พิมพ์ newincome

เลือกตัวแปร income คลิกปุ่ม 🕒

Numeric Expression พิมพ์ income * 1.1

คลิกปุ่ม Type & Label

Compute Variable: Type and Label	
Label C Label: เพิ่มรายได้เพศหญิง	Continue
C Use expression as label	Cancel
Type Numeric	Help
O String Width: 8	

Label พิมพ์ เพิ่มรายได้เพศหญิง

คลิกปุ่ม Continue

คลิกปุ่ม If

Compute Variable:	lf Cases		×
 id id sex age Level of education 	<u> </u>	 Include all cases Include if case satisfies condition: sex = 2 	< 2
 Income Income Income Income Income V6a V6b V6c V6d V6d 		+ < > 7 8 9 Functions: ▲ . <= >= 4 5 6 ABS(numexpr) ANY(test, value, value,) ARSIN(numexpr) ARTAN(numexpr) CDFNORM(zvalue) CDF BEBNULL L(op)	
w vne	•	Continue Cancel Help	

เลือกตัวแปร sex คลิกปุ่ม 🕒

เลือก Include if case satisfies condition

พิมพ์ sex = 2

คลิกปุ่ม Continue

คลิกปุ่ม OK

การเลือกข้อมูลมาทำการวิเคราะห์

ปกติโปรแกรมนำข้อมูลทั้งหมดใน Data View มาทำการวิเคราะห์ ถ้าผู้วิจัยต้องการเลือกข้อมูลบางชุดมาทำ การวิเคราะห์ ให้เลือกเมนู Data -> Select Cases

Select Cases	×
 id sex age Level of education status income income ike v6a v6b v6b v6c v6d v6d time v7a v7b v7c 	Select All cases If condition is satisfied If Random sample of cases Sample Based on time or case range Range Use filter variable: Image: Image:
Current Status: Do not filter ca	ases
	OK Paste Reset Cancel Help

All casesข้อมูลทั้งหมด ทุกชุด ทุกด้วแปรIf condition is satisfiedเลือกชุดข้อมูลตามเงื่อนไขที่กำหนดRandom sample of casesเลือกข้อมูลด้วยวิธีสุ่มโดยกำหนดจำนวนชุดข้อมูลที่ต้องการจากการสุ่มโดยประมาณ (Approximately) หรือจำนวนชุดข้อมูลที่แน่นอน (Exactly)Base on time or cases rangeเลือกชุดข้อมูลโดยใช้ลำดับของชุดข้อมูลเป็นตัวกำหนดUse Filter variableเลือกชุดข้อมูลโดยใช้ลำดับของชุดข้อมูลเป็นตัวกำหนดUnselected Cases AreFilteredFilteredเป็นการเลือกชุดข้อมูลแบบชั่วคราว ถ้าต้องการกลับมาเลือกข้อมูลทั้งหมดให้เลือกเมนู Data -> Select Cases -> All caseDeletedเป็นการเลือกชุดข้อมูลแบบถาวร โดยที่ข้อมูลที่ไม่ถูกเลือกจะถูกลบออกจาก Data Viewแต่ไม่มีผลต่อข้อมูลของไฟล์ข้อมูลเดิมถ้าไม่บันทึกตัวอย่าง ต้องการเลือกชุดข้อมูลเฉพาะเพศชาย

เลือกตัวแปร sex

- เลือก If condition is satisfied
- คลิกปุ่ม If

Select Cases: If			×
 Id Image: Sex Image: Sex 	<u> </u>	sex = 1	< >
 		+ < > 7 8 9 Functions:	
 ike ike		ABS(numexpr) ANY(test,value,value,) ANY(test,value,value,) ARSIN(numexpr) ARTAN(numexpr)	
 Image: web Image: web		*** ~ () Delete CDFNORM(zvalue) CDF.BERNOULLI(q,p)	~
time	~	Continue Cancel Help	

เลือกตัวแปร sex คลิกปุ่ม

พิมพ์ sex = 1

คลิกปุ่ม Continue

เถือก Deleted

คลิกปุ่ม OK

หมายเหตุ

- 1. ห้ามสั่งบันทึก จากเมนู File -> Save เพราะจะทำให้ข้อมูลเดิมสูญหาย
- ถ้าต้องการนำชุดข้อมูลนี้ไปวิเคราะห์ครั้งต่อไป ให้บันทึกชื่อไฟล์ใหม่

จากเมนู File -> Save As

4. การดำเนินการอื่นๆ กับข้อมูล

การเรียงลำคับข้อมูล เลือกเมนู Data -> Sort Cases การกำหนดน้ำหนักแก่ชุดข้อมูล เลือกเมนู Data -> Weight Cases การสลับที่ตัวแปรและชุดข้อมูล เลือกเมนู Data -> Transpose การแบ่งข้อมูลเป็นกลุ่มย่อย เลือกเมนู Data -> Split File การเปลี่ยนแปลงข้อมูลของโปรแกรม เลือกเมนู Edit -> Options

การวิเคราะห์หาสถิติพื้นฐาน

การสร้างตารางแจกแจงความถี่แบบทางเดียว

เป็นการแจกแจงข้อมูลตามลักษณะใคลักษณะหนึ่งของข้อมูลเพียงลักษณะเดียว หรือจำแนกก่าของข้อมูลโดย

ใช้ตัวแปรตัวเคียว

ตัวอย่าง ต้องการทราบความถึ่งองระดับการศึกษา

- 1. เปิดไฟล์ข้อมูล data.sav
- เลือกเมนู Analyze -> Descriptive Statistics -> Frequencies

Frequencies			×
 id id sex age status income income like v6a v6b income income<td>•</td><td>Variable(s):</td><td>OK Paste Reset Cancel Help</td>	•	Variable(s):	OK Paste Reset Cancel Help
	Statistics	s Charts Format	
d v i	<u> </u>		

เลือกตัวแปร Level of education คลิกปุ่ม 🕒

หมายเหตุ โปรแกรมจะแสดง Label แทนชื่อตัวแปร

คลิกปุ่ม OK จะได้ผลลัพธ์ดังนี้

📅 Output1 - SPSS Viewer							×
File Edit View Data Transform Insert Format Analyze Graphs Utilities Add-ons Window Help							
284	. In 🔳	- R Ø -	1				
		Ì					
Output			Level of (education			^
⊢ requencies → Title			Frequency	Percent	Valid Percent	Cumulative Percent	
	Valid	Under Bachelor	30	30.0	30.6	30.6	1
Level of edu		Bachelor	41	41.0	41.8	72.4	
_		Master	20	20.0	20.4	92.9	
		Doctorate	7	7.0	7.1	100.0	=
		Total	98	98.0	100.0		_
	Missing	9	2	2.0			
	Total		100	100.0			~
<	<					>	
	•	SPSS Processor is re	ady				//

กวามหมายของผลลัพธ์ กอลัมน์ที่ 1 บอกจำนวนข้อมูล

	•			
Valid	จำนวนข้อมูลที่นำมาแจกแจงความถื่			
Missing	จำนวนข้อมูลที่ไม่เ	สมบูรณ์		
Total	จำนวนข้อมูลทั้งหว	ทษ		
คอลัมน์ที่ 2	แสดงชื่อตัวแปร ห่	รือ Label ของตัวแปร ตามก่าที่เป็นไปได้ของตัวแปร		
คอลัมน์ที่ 3	Frequency	คือ ก่าที่แสดงกวามถี่ที่นับได้		
คอถัมน์ที่ 4	Percent	คือ ค่าที่แสดงกวามถี่ที่นับได้ในรูปร้อยละ กิดจากข้อมูลทั้งหมด		
คอลัมน์ที่ 5	Valid Percent	คือ ค่าที่แสดงความถี่ที่นับได้ในรูปร้อยละ ไม่รวมค่า Missing		
คอลัมน์ที่ 6	Cumulative Percer	nt คือ ค่าที่แสดงความถี่สะสมของ Valid Percent		

การสร้างตารางแจกแจงความถี่แบบหลายทาง

เป็นการจำแนกข้อมูลตามลักษณะของข้อมูลตั้งแต่ 2 ลักษณะมาแจกแจงความถี่พร้อมกัน เรียกว่า ตารางแจกแจงความถี่รวม (Cross tab Table)

ตัวอย่าง ตารางแจกแจงความถี่ จำแนกตามเพศและระดับการศึกษา

เถือกเมนู Analyze -> Descriptive Statistics -> Crosstabs

Crosstabs		
 id age status income income ike v6a v6b v6c v6d v6d time v7a v7b v7c 	Row(s): Column(s): Column(s): Auger 1 of 1 Previous Next	OK Paste Reset Cancel Help
Display clustered bar cł	arts	
Suppress tables		
	Statistics Cells Format	
3		

เลือกตัวแปร sex คลิกปุ่ม 찬 เก็บไว้ในบ๊อกซ์ Row(s)

เลือกตัวแปร Level of education คลิกปุ่ม โคบไว้ในบ๊อกซ์ Column(s) คลิกปุ่ม Cells

Crosstabs: Cell D	isplay 🔀
Counts Counts	Continue Cancel Help
Percentages	Residuals
Row	🗖 Unstandardized
🔽 Column	🔲 Standardized
🔽 Total	Adjusted standardized
Noninteger Weigh Round cell co Truncate cell No adjustmen	ts ounts O Round case weights counts O Truncate case weights its

ตรง Percentages เถือก Row, Column, Total

คลิกปุ่ม Continue

คลิกปุ่ม OK จะได้ผลลัพธ์

				Level of education			
			Under Bachelor	Bachelor	Master	Doctorate	Total
sex	Male	Count	19	26	13	4	62
		% within sex	30.6%	41.9%	21.0%	6.5%	100.0%
		% within Level of education	63.3%	63.4%	65.0%	57.1%	63.3%
		% of Total	19.4%	26.5%	13.3%	4.1%	63.3%
	Female	Count	11	15	7	3	36
		% within sex	30.6%	41.7%	19.4%	8.3%	100.0%
		% within Level of education	36.7%	36.6%	35.0%	42.9%	36.7%
		% of Total	11.2%	15.3%	7.1%	3.1%	36.7%
Total		Count	30	41	20	7	98
		% within sex	30.6%	41.8%	20.4%	7.1%	100.0%
		% within Level of education	100.0%	100.0%	100.0%	100.0%	100.0%
		% of Total	30.6%	41.8%	20.4%	7.1%	100.0%

sex * Level of education Crosstabulation

ความหมายของผลลัพธ์ sex หมายถึง ตัวแปรที่แจกแจงทางด้านแถว

	4	é	ıd	עפ	~ ~ ~
Level of education	หมายถง	ຫວມາ	ไรทแจกเ	เจงทางด้าเ	นคอลมน
Dever of education				••••••••	

Count	19	จำนวนที่นับได้	มีเพศชายที่จบการศึกษา ต่ำกว่าปริญญาตรี 19 คน
% within sex	30.6%	จำนวนร้อยละเมื่อ	มีเพศชายที่จบการศึกษา ต่ำกว่าปริญญาตรีคิดเป็น
		เทียบกับเพศชาย	30.6 % ของเพศชายทั้งหมด (62 คน)
% within Level	63.3%	จำนวนร้อยละเมื่อ มีเพศชายที่จบการศึกษา ด่ำกว่าปริญญาตรีกิดเ	
of education		เทียบกับระดับ	63.3 % ของเพศที่จบต่ำกว่าปริญญาตรีทั้งหมด (30
		การศึกษา	คน)
% of Total	19.4%	จำนวนร้อยละเมื่อ	มีเพศชายที่จบการศึกษา ต่ำกว่าปริญญาตรีคิดเป็น
		เทียบกับข้อมูล	19.4 % ของข้อมูลทั้งหมด (100 คน)
		ทั้งหมด	

การแจกแจงความถี่แบบ Multiple Response

เป็นการจำแนกหรือการแจกแจงความถี่สำหรับตัวแปรที่มีค่าได้หลายลักษณะ คือข้อถามมีการตอบ

มากกว่า 1 ข้อ

ตัวอย่าง ข้อถาม ท่านชมรายการทีวีใดบ้าง (ตอบได้มากกว่า 1 ข้อ)

ตัวแปร v6a ข่าว/สารคดี

ตัวแปร v6b ละคร

ตัวแปร v6c เพลง

ตัวแปร v6d เกมโชว์

ค่าของตัวแปร 1 ผู้ตอบเลือกตัวเลือก 9 ผู้ตอบ ไม่เลือกตัวเลือก

เถือกเมนู Analyze -> Multiple Response -> Define Sets

Define Multiple Response Sets	
Set Definition Variables in Set:	Close Help Mult Response Sets: \$t∨
Variables Are Coded As	Add Change Remove

เลือกตัวแปร v6a คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Variables in Set

เลือกตัวแปร v6b คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Variables in Set

เลือกตัวแปร v6c คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Variables in Set

เลือกตัวแปร v6d คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Variables in Set

ตรง Variables Are Coded As เลือก Dichotomies Counted value ป้อน 1 ในช่องสี่เหลี่ยม

Name ให้พิมพ์ชื่อตัวแปรใหม่ชื่อ tv

Label ให้พิมพ์คำอธิบายตัวแปร รายการที่ชอบ

คลิกปุ่ม Add

คลิกปุ่ม Close

เถือกเมนู Analyze -> Multiple Response -> Frequencies

🔲 Multiple Respo	nse Fre	quencies	
Mult Response Sets:		Table(s) for: [ปี]รายการที่ชอบ [\$tv]	OK Paste Reset Cancel Help
Missing Values Exclude cases li Exclude cases li	stwise witł stwise witł	nin dichotomies nin categories	

เลือกตัวแปร รายการที่ชอง [\$tv] คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Table(s) for คลิกปุ่ม OK จะได้ผลลัพธ์

การบรรยายลักษณะข้อมูลด้วยค่าสถิติเบื้องต้น

การอธิบายหรือบรรยายลักษณะข้อมูลด้วยค่าสถิติเบื้องต้น เป็นการนำข้อมูลที่เก็บรวบรวม นำมาคำเนินการ หาก่าที่จะเป็นตัวแทนของกลุ่มข้อมูล

ค่าสถิติเบื้องต้นที่หาได้จะใช้อธิบายหรือบรรยายกลุ่มข้อมูลในรูปของผลสรุปแทนที่จะนำข้อมูลทั้งหมดมา นำเสนอ ข้อมูลที่จะนำมาหาค่าสถิติเบื้องต้นสามารถใช้ได้ทั้งข้อมูลประชากร (Population) และข้อมูลตัวอย่าง (Sample)

ข้อมูลที่จะนำมาหาค่าสถิติเบื้องต้นต้องเป็นข้อมูลที่มีการวัคอยู่ในระดับอัตราส่วนหรือระดับช่วง บางกรณี อาจจะใช้ข้อมูลระดับเรียงอันดับ

การหาค่าสถิติเบื้องต้นจำแนกได้ 4 วิชี

1. การหาค่าแนวโน้มเข้าสู่ส่วนกลาง (Central Tendency)

ค่าเฉลี่ย (Mean) เช่น

ค่าเฉลี่ยแบบเลขคณิต (Arithmetic Mean or Average, A.M),

ค่าเฉลี่ยแบบเรขาคณิต (Geometric Mean, F.M),

้ก่าเฉลี่ยแบบฮาร์ โมนิก (Harmonic Mean, H.M)

ฐานนิยม (Mode)

ค่าแสดงตำแหน่งของข้อมูล (N-Tiles) เช่น มัธยฐาน (Median), ควอไทล์ (Quartiles),

เคไซล์ (Deciles) และเปอร์เซ็นต์ไทล์ (Percentiles)

2. การหาค่าการกระจายข้อมูล (Dispersion)

พิสัย (Range)

ส่วนเบี่ยงเบนควอไทล์ (Quartile Deviation)

ส่วนเบี่ยงเบนเฉลี่ย (Mean Deviation)

ส่วนเบี่ยงเบนมาตรฐาน (Standard Deviaion)

สัมประสิทธิ์ของการแปรผันหรือการกระจาย (Coefficient of Variation)

3. การหาค่าคะแนนมาตรฐาน (Standard Score)

4. การหาค่าแสดงรูปร่างของโค้งความถี่ (Frequencies Curve, Distribution)

โค้งปกติ (Normal Curve)

โค้งเบ้ (Skewness Curve) เช่น โค้งเบ้ซ้าย, โค้งเบ้ขวา

การหาค่าสถิติเบื้องต้นแบบไม่จำแนกกลุ่ม

จากไฟล์ DATA.sav ตัวแปรที่สามารถคำนวณได้คือ age, income ตัวอย่าง คำนวณหาค่าสถิติเบื้องต้น ตัวแปรอาขุ

เลือก Analyze -> Descriptive Statistics -> Descriptives

Descriptives		×
 id sex Level of education [status income like v6a v6h 	Variable(s):	OK Paste Reset Cancel Help
Save standardized values a	as variables	Options

เลือกตัวแปร age คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Variable(s)

คลิกปุ่ม Options ให้เลือกค่าสถิติตามรูป

Descriptives: Opt	tions	×
 ✓ Mean Dispersion ✓ Std. deviation ✓ Variance ✓ Range Distribution ✓ Kurtosis Display Order ✓ Variable list △ Alphabetic ○ Ascending mean ○ Descending mean 	Sum Minimum Maximum S.E. mean Skewness	Continue Cancel Help

คลิกปุ่ม Continue

คลิกปุ่ม OK จะไค้ผลลัพธ์

Descriptive Statistics

	N	Range	Minimum	Maximum	Sum	Me	an	Std.
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic
age	97	35	21	56	3593	37.04	.933	9.188
Valid N (listwise)	97							

Variance	Skewness		Kurl	osis
Statistic	Statistic	Std. Error	Statistic	Std. Error
84.415	.018	.245	851	.485

ความหมายของผลลัพธ์

age		ชื่อตัวแปรอาขุที่ต้องการหาค่าสถิติเบื้องด้น		
Ν	Statistic	จำนวนข้อมูลทั้งหมดไม่รวม Missing		
Range	Statistic	ค่าพิสัย		
Minimum	Statistic	ก่าต่ำสุดของอายุ		
Maximum	Statistic	ค่าสูงสุดของอายุ		
Sum	Statistic	ค่าผลรวมของอายุ		
Mean	Statistic	ค่าอาขุเฉลี่ย		
	Std. Error	ค่าความคาดเกลื่อนมาตรฐานของค่าเฉลี่ย		
Std.	Statistic	ค่าส่วนเบี่ยงเบนมาตรฐาน แสดงถึงการกระจายของข้อมูล		
Variance	Statistic	ค่าความแปรปรวนของข้อมูล		
Skewness Statistic n'		ค่าที่ใช้วัดความเบ้ของโค้งความถี่ ว่าโค้งปกติหรือโค้งเบ้ซ้ายหรือโค้งเบ้		
		ขวา		
		Skewness = 0 หรือใกล้ศูนย์ โค้งปกติ		
		Skewness < 0 โค้งเบ้ช้าย		
		Skewness > 0 โค้งเบ้บวา		
	Std. Error	ค่าความคาดเกลื่อนมาตรฐานของ Skewness		
Kurtosis	Statistic	ค่าที่ใช้วัดกวามสูงของโก้งปกติ		
		Kurtosis = 0 หรือใกล้ศูนย์ สูงปกติ		
		Kurtosis < 0 สูงมาก		
		Kurtosis > 0 สูงน้อย		
	Std. Error	ก่ากวามกาดเกลื่อนมาตรฐานของ Kurtosis		

การหาค่าสถิติเบื้องต้นแบบจำแนกกลุ่ม

เป็นการหาค่าสถิติเบื้องต้นของข้อมูลแต่ละกลุ่มย่อยเพื่อนำมาเปรียบเทียบกัน เช่น หาอายุเฉลี่ยระหว่างเพศ ชายและหญิง เปรียบเทียบระดับความพึงพอใจของผู้บริ โภคอาชีพต่างๆ

้ตัวแปรที่ใช้หาค่าสถิติเบื้องต้นต้องคำนวณได้ คือ ระดับช่วงหรืออัตราส่วนหรือระดับเรียงอันดับ

ตัวแปรที่นำมาใช้เป็นตัวแปรกลุ่มควรเป็นตัวแปรระดับนามบัญญัติหรือเรียงอันดับ

ตัวอย่าง ต้องการกำนวณหาก่าสถิติเบื้องต้นของอายุเฉลี่ย จำแนกตามเพศ

เลือกเมนู Analyze -> Compare Means -> Means

Means		
 id Level of education status income ike v6a v6b v6c v6d time v7a< 	Dependent List:	OK Paste Reset Cancel Help Options

เลือกตัวแปร age คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Dependent List เลือกตัวแปร sex คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Independent List

คลิกปุ่ม OK จะได้ผลลัพธ์

Report

age			
sex	Mean	N	Std. Deviation
Male	37.58	62	9.557
Female	36.09	35	8.545
Total	37.04	97	9.188

ความหมายของผลลัพธ์

age	ชื่อตัวแปรที่ถูกนำมาคำนวณหาค่าสถิติเบื้องต้น
sex	ชื่อตัวแปรที่ถูกกำหนดให้เป็นตัวแบ่งกลุ่ม
Male	ค่าของตัวแปร sex
Female	ค่าของตัวแปร sex
Mean	ค่าเฉลี่ขของตัวแปร age ในแต่กลุ่มของตัวแปร sex
Ν	จำนวนข้อมูล ในแต่ละกลุ่มของตัวแปร sex
Std. Deviation	ค่าส่วนเบี่ยงเบนมาตรฐานของตัวแปร age ในแต่ละกลุ่มของตัวแปร sex

การตรวจสอบเครื่องมือและข้อมูลที่ใช้ในการวิจัย

งานวิจัยสิ่งที่ถือว่าสำคัญที่สุด คือ ข้อมูล ก่อนที่จะนำข้อมูลไปวิเกราะห์จะต้องตรวจข้อมูลก่อน ตัวอย่างเกรื่องมือในงานวิจัย เช่น แบบสัมภาษณ์ แบบสอบถาม แบบสำรวจ เกรื่องทอลอง ฯ การหาความเชื่อมั่นของแบบสอบถามที่ใช้ในการเก็บรวบรวมข้อมูล

ตัวอย่าง ผู้วิจัยต้องการหาความเชื่อมั่นของแบบสอบถามที่สำรวจจากผู้ใช้บริการรถเมล์ ขสมก. จำนวน 20 คำถาม มีผลตอบ 15 คน

การใช้โปรแกรมช่วยในการหาก่ากวามเชื่อมั่น ดังนี้

- 1. เปิดไฟล์ DATA10A.sav
- 2. เลือกเมนู Analyze -> Scale -> Reliability Analysis

🗖 Reliability Analysis					×
	Þ	Items:		<	OK Paste Reset Cancel Help
Model: Alpha 💌			Statistics		

้เลือกตัวแปรที่ต้องการความเชื่อมั่น เลือกทุกตัวคลิกปุ่ม 🕩

Model เลือก Alpha ซึ่งเป็นวิธีทดสอบของ Cronbach

3. คลิกปุ่ม Statistics

Reliability Analysis: Stat	tistics	
Descriptives for Item Scale Scale if item deleted	Inter-Item Correlations Covariances	Continue Cancel Help
Summaries Means Variances Covariances Correlations	ANOVA Table None F test Friedman chi-square C Cochran chi-square	
🔲 Hotelling's T-square	Tukey's test of additivity	ı
Intraclass correlation coeff	icient	
Model: Two-Way Mixed	Type: Consisten	юу 💌
Confidence interval: 95	% Test value: 0	

เลือก Scale if item deleted

คลิกปุ่ม Continue

4. คลิกปุ่ม OK จะได้ผลลัพธ์

Reliability S	atistics
Cronbach's Alpha	N of Items
.606	20

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
q01	48.60	61.400	.225	.591
q02	48.73	60.210	.372	.574
q03	48.27	59.781	.382	.572
q04	48.67	63.810	.090.	.611
q05	48.60	65.400	.005	.624
q06	48.00	64.857	.086	.608
q07	48.93	63.495	.093	.611
908	48.67	57.095	.623	.545
909	48.53	61.124	.260	.586
q10	48.53	68.124	113	.637
q11	48.47	63.981	.081	.612
q12	48.80	60.600	.276	.584
q13	48.60	66.114	016	.624
q14	48.67	61.810	.189	.596
q15	48.67	57.095	.623	.545
q16	48.40	58.543	.362	.570
q17	48.60	58.971	.412	.567
q18	48.27	63.067	.163	.599
q19	48.33	61.238	.285	.584
q20	47.93	64.210	.080	.611

Item-Total Statistics

ความหมายของผลลัพธ์

Cronbach's Alpha ค่าความเชื่อมั่นของเครื่องมือเท่ากับ .606

คอลัมน์ที่ 1 คือ ตัวแปรข้อถาม

Scale Mean if Item Deleted	ค่าคะแนนเฉลี่ยรวมทุกข้อถามที่เหลือหลังจากลบข้อถามบรรทัคนี้
	ออก
Scale Variance if Item Deleted	ค่าความแปรปรวนรวมทุกข้อถามที่เหลือหลังจากลบข้อถาม
	บรรทัคนี้ออก
Corrected Item-Total Correlation	ค่าสัมประสิทธิ์ความสัมพันธ์ระหว่างคะแนนรวมทุกข้อถามกับ
	ข้อถาม
Cronbach's Alpha if Item Deleted	ค่าระดับความเชื่อมั่นของเครื่องมือที่เหลือหลังจากข้อถามบรรทัด
	นี้ออก

สรุป เครื่องมือที่ใช้มีความเชื่อมั่นเท่ากับ 0.606 อยู่ในระดับที่พอใช้ ถ้าจะให้คี่ค้องตั้งแต่ 0.8 ขึ้นไป ถ้าต้องการความเชื่อมั่นสูงต้องลบข้อถามที่แสดงค่า Cronbach's Alpha if Item Deleted สูงสุดออก

การประมาณค่าและการทดสอบสมมติฐานทางสถิติ

การประมาณค่า เป็นวิธีการอนุมานทางสถิติวิธีหนึ่ง เพื่อจะหาค่าที่คาดว่าน่าจะเป็นค่าของข้อมูลทั้งหมดหรือ เรียกว่าค่าพารามิเตอร์ของประชากร โดยใช้ค่าของข้อมูลตัวอย่างที่เรียกว่าค่าสถิติ การประมาณค่า คือ การประมาณค่าพารามิเตอร์ซึ่งเป็นลักษณะของประชากรโดยใช้ก่าสถิติของข้อมูลตัวอย่าง หรืออาจกล่าวได้ว่าเป็นการประมาณค่าพารามิเตอร์ด้วยค่าสถิติ เช่น

ประมาณล่าเฉลี่ยประชากร ($\$) ด้วยล่าเฉลี่ยตัวอย่าง (x)

ประมาณค่าสัคส่วนหรือร้อยละ () ค่าสัคส่วนตัวอย่าง (p)

ประมาณค่าความแปรปรวนประชาการ ($\ ^2)$ ด้วยค่าความแปรปรวนตัวอย่าง (s^2)

การทดสอบสมมติฐานทางสถิติ เป็นวิธีการอนุมานทางสถิติวิธีหนึ่งที่ใช้ตรวจสอบสมมติฐานวิจัยที่ผู้วิจัยกาดเดา แต่การตรวจสอบนั้นจะไม่ทำกับสมมติฐานวิจัยโดยตรงแต่จะเป็นการตรวจสอบจากสมมติฐานทางสถิติที่ผู้ ทดสอบตั้งขึ้นมาให้สอดคล้องกับสมมติฐานวิจัยและนำไปสรุปสมมติฐานวิจัย

หลักเกณฑ์ การตั้งสมมติฐานทางสถิติ สมมติฐานหลัก (H0) ต้องมีเครื่องหมายเท่ากับร่วมอยู่ด้วย หลักเกณฑ์ การปฏิเสธหรือยอมรับสมมติฐาน H0

การทดสอบค่าเฉลี่ย การทดสอบค่าสัดส่วน และการทดสอบค่าความแปรปรวน ใช้หลักเกณฑ์เดียวกัน

สมมติฐ	าน	เขตปฏิเสธสมมติฐาน H0	
แบบสองทาง	H0: =	Sig. (2-tailed) <	
(Two-tails Test)	0		
	H1 : µ ≠		
	0		
แบบทางเดียว	H0:	Sig. (2 - tailed)	
(One-tails Test)	0	1. 2 <	
	H1: >	2. $t > 0$	
	0		
	H0:	Sig. (2 - tailed)	
	0	1. 2 <	
	H1: <	2. $t < 0$	
	0		
หมายเหตุ	1. ₀ เป็นค่าค	งที่	
	2. ผู้วิจัยเป็นผู้กำหนด		
	3. สมมติฐานแบบทางเดียว จะปฏิเสธสมมติฐาน H0 ก็ต่อเมื่อ		
	เงื่อนไขทั้ง 2 ข้อเป็นจริงเท่านั้น		

การทดสอบสมมติฐานค่าเฉลี่ยสำหรับ 1 กลุ่มตัวอย่าง

สม	มมติฐาน	เขตปฏิเสธสมมติฐาน H0	
แบบสองทาง	H0: $_{1}{2}=_{0}$	Sig. (2-tailed) <	
(Two-tails Test)	H1: $_{1}$ - $_{2} \neq \mu_{0}$		
แบบทางเดียว	H0: $1^{-2} 0$	Sig. (2 - tailed)	
(One-tails Test)	H1: $_{1}{2}>_{0}$	1. 2 <	
		2. t > 0	
	H0: $1^{-2} 0$	Sig. (2 - tailed)	
	H1: $_{1}{2}<_{0}$	1. 2 <	
		2. t < 0	
หมายเหตุ	 0 เป็นค่าคงที่ 		
	2. ผู้วิจัยเป็นผู้กำหนด		
	3. สมมติฐานแบบทางเดียว จะปฏิเสธสมมติฐาน H0 ก็ต่อเมื่อ		
	เงื่อนไขทั้ง 2 ข้อเป็นจริง หรือ ข้อใดข้อหนึ่งไม่จริง		

การทดสอบสมมติฐานผลต่างระหว่างค่าเฉลี่ยสำหรับ 2 กลุ่มตัวอย่าง

การทดสอบสมมติฐานค่าเฉลี่ย

การทดสอบสมมติฐานค่าเฉลี่ยสำหรับ 1 กลุ่มตัวอย่าง

เป็นการศึกษาโดยการตรวจสอบว่าคุณลักษณะใดคุณลักษณะหนึ่งของข้อมูลเป็นไปตามที่คาดหวังหรือ กำหนดไว้หรือไม่ โดยพิจารณาจากค่าเฉลี่ย คุณลักษณะ เช่น อายุ รายได้ ระดับความพึงพอใจ ฯ ซึ่งถือว่าเป็นตัว แปรหนึ่งตัวแปร หรือเรียกได้ว่า การวิเคราะห์ข้อมูลแบบ 1 ตัวแปร

ตัวแปรที่นำมาทดสอบต้องเป็นตัวแปรที่กำนวณใด้ คือ ระดับช่วง อัตราส่วน ระดับเรียงอันดับ .

ตัวสถิติที่ใช้ในการทคสอบ 2 ตัว

กรณี**ทราบ**การกระจาย () ของข้อมูลประชากร ใช้ **Z-Test**

กรณีใม่ทราบการกระจาย () ของข้อมูลประชากร แต่ทราบทราบการกระจายของข้อมูลตัวอย่าง

```
ใช้ T-Test สำหรับการวิจัยจะใช้ตัวนี้ เพราะเป็นการวิจัยจากข้อมูลตัวอย่าง
```

ตัวอย่าง

```
สมมติฐานวิจัย คนขับรถแท็กซี่ใน กทม. มีรายได้ไม่ต่ำกว่า 1,000 บาท
```

```
สมมติฐานทางสถิติH0 : รายได้คนขับแท็กซี่ไม่ต่ำกว่า 1,000 บาท
```

H1 : รายได้คนขับแท็กซี่ต่ำกว่า 1,000 บาท

```
กำหนดเป็นสัญญาลักษณ์ H0 : μ 1,000
H1 : μ < 1,000
```

วิธีการหาค่า T-Test

- 1. เปิดไฟล์ DATA11.sav
- 2. เลือกเมนู Analyze -> Compare Means -> One Sample T Test

🗖 One-Sample T Test		×
	Test Variable(s):	OK Paste Reset Cancel Help
	Test Value: 1000	Options

เลือกตัวแปร One-sample [income] คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Test Variable(s)

Test Value: พิพม์ 1000

3. คลิกปุ่ม Options

One-Sample T Test: Options	
Confidence Interval: 95 %	Continue
Missing Values	Cancel
 Exclude cases analysis by analysis Exclude cases listwise 	Help

Confidence Interval พิมพ์ 95

คลิกปุ่ม Continue

4. คลิกปุ่ม OK ได้ผลลัพธ์

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
One-sample	10	960.0000	139.04436	43.96969

One-Sample Test

	Test Value = 1000					
					95% Confidenc the Diffe	ce Interval of Frence
	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper
One-sample	910	9	.387	-40.00000	-139.4663	59.4663

ความหมายของผลลัพธ์

One-Sample Statistics

Ν	จำนวนข้อมูล
Mean	ค่าเฉลี่ยของรายได้
Std. Deviation	ค่าส่วนเบี่ยงเบนมาตรฐานของรายได้ ที่แสดงการกระจายของข้อมูล
Std. Error Mean	้ก่ากวามกาดเกลื่อนมาตรฐานของรายได้

One-Sample Test

Test Value = 1000	ค่าที่ผู้ทคสอบกำหนคไว้ในสมมติฐาน
t, df, Sig.(2-tailed)	ค่าที่ใช้ในการตัดสินใจว่าจะขอมรับหรือปฏิเสธสมมติฐาน H0
Mean Difference	ผลต่างของค่าเฉลี่ยประชากรและค่าเฉลี่ยของตัวอย่าง ค่าติคลบหมายความ
	ว่าค่าเฉลี่ยตัวอย่างน้อยกว่าค่าเฉลี่ยของประชากร
95% Confidence	ี่ ก่าที่แสดงขอบเขตบนและขอบเขตล่างของการประมาณก่าผลต่างระหว่าง
	รายได้เฉลี่ยตัวอย่างกับรายได้เฉลี่ยของประชากรที่ช่วงความเชื่อมั่น 95%

การตัดสินใจว่าจะยอมรับหรือปฏิเสธสมมติฐาน H0 จะต้องพิจารณาจาก ค่า t และ Sig.(2-tailed)

```
สำหรับค่า t จะอาศัยตารางสถิติมาตรฐาน
```

```
สำหรับค่า Sig.(2-tailed) จะพิจารณาตามประเภทของสมมติฐานทางสถิติ
```

```
กรณีกำหนดสมมติฐานแบบสองทาง (Two-tails Test)
```

จะปฏิเสธสมมติฐาน H0 เมื่อค่า Sig.(2-tailed) มีค่าน้อยกว่าค่า ที่ผู้วิจัยกำหนด

```
กรณีกำหนดสมมติฐานแบบทางเดียว (One-tails Test)
```

จะปฏิเสธสมมติฐาน H0 เมื่อค่า Sig.(2-tailed) หารด้วย 2 มีค่าน้อยกว่าค่า ที่ผู้วิจัยกำหนด

จาก**ตัวอย่าง**ได้กำหนดสมมติฐานแบบทางเดียว

การตัดสินใจปฏิเสธสมมติฐาน H0 เมื่อค่า Sig.(2-tailed) หารด้วย 2 มีค่าน้อยกว่าค่า ที่ผู้วิจัยกำหนดและ ค่า t < 0

```
H0:μ 1,000
```

H1 : $\mu < 1,000$

ผู้ทคสอบกำหนดช่วงความเชื่อมั่น 95% จะได้ค่า = 0.05 ค่า Sig.(2-tailed) ที่คำนวณได้เท่ากับ 0.387 เนื่องจากตัวอย่างเป็นการทคสอบสมมติฐานแบบทางเดียวก่อนที่จะค่า เปรียบเทียบค่า Sig.(2-tailed) ต้องนำ ค่า Sig.(2-tailed) หารด้วย 2 ก่อน ค่าจากตัวอย่างคือ 0.387/2 = 0.1935 ซึ่งมีค่ามากค่า ที่ กำหนดคือ 0.05 (0.1935 > 0.05)

ดังนั้นจึงตัดสินใจ ยอมรับสมมติฐาน H0 : μ 1,000

สรุปผลได้ว่า รายได้เฉลี่ยของคนขับแท็กซี่ไม่ต่ำกว่า 1,000 บาทที่ระดับนัยสำคัญ 0.05

การทดสอบสมมติฐานผลต่างระหว่างค่าเฉลี่ยสำหรับ 2 กลุ่มตัวอย่าง มี 2 กรณี

เป็นการทดสอบผลต่างระหว่างค่าเฉลี่ยของลักษณะที่สนใจของ 2 กลุ่มตัวอย่างว่าแตกต่างกันหรือไม่

- 1. กรณีที่ 2 กลุ่มตัวอย่างเป็นอิสระต่อกัน
- กรณีที่ 2 กลุ่มตัวอย่างเป็นแบบจับคู่

1. กรณีที่ 2 กลุ่มตัวอย่างเป็นอิสระต่อกัน

เป็นการศึกษาเปรียบเทียบและตรวจสอบว่าคุณลักษณะใคคุณลักษณะหนึ่งของข้อมูลระหว่าง 2 กลุ่มมีความ แตกต่างกันหรือไม่ และถ้าแตกต่างกันนั้นแตกต่างกันอย่างไร โดยพิจารณาจากค่าเฉลี่ยของคุณลักษณะนั้นๆ การทดสอบแบบนี้จัดอยู่ในประเภทของการวิเคราะห์ข้อมูลแบบ 2 ตัวแปร (Bivariate data analysis) เนื่องจากการทดสอบจะต้องใช้ตัวแปร 2 ตัว คือตัวแปรหนึ่งแทนคุณลักษณะอีกตัวแปรหนึ่งใช้แบ่งกลุ่ม ข้อมูลตัวแปรคุณลักษณะ ต้องคำนวณได้ คือ ระคับช่วงและอัตราส่วน ข้อมูลตัวแปรแบ่งกลุ่ม ต้องคำนวณไม้ได้ คือ Nominal, Ordinal

การทดสอบค่าเฉลี่ยของข้อมูล 2 กลุ่มแบบพาราเมตริก กรณี 2 กลุ่มเป็นอิสระต่อกัน

ข้อมูลที่จะทคสอบต้องมีคุณสมบัติที่สามารถใช้วิธีการการทคสอบแบบพาราเมตริก คือ ข้อมูลหรือ ตัวแปรที่ต้องการทดสอบจะต้องมีการแจกแจงแบบปกติหรือใกล้เคียงแบบปกติ และสามารถคำนวณได้ คือตัวแปรระดับช่วงและอัตราส่วน

ตัวสถิติที่ใช้ทดสอบ

กรณีทราบการกระจายของข้อมูลของประชากรทั้ง 2 กลุ่ม (ทราบ ₁, ₂) ใช้ **Z-Test** กรณีไม่ทราบการกระจายของข้อมูลของประชากรทั้ง 2 กลุ่ม (ไม่ทราบ ₁, ₂) ใช้ **T-Test** ถ้าผู้วิจัยไม่ทราบการกระจายของข้อมูลทั้ง 2 ประชากร และไม่ทราบการกระจายแตกต่างกันหรือไม่ ให้ ใช้ข้อมูลตัวอย่างมาทคสอบเพื่อพิจารณาว่าการกระจายของข้อมูลประชากรมีความแตกต่างกันหรือไม่ โดยกำหนดสมมติฐาน ดังนี้

H0 : การกระจายข้อมูลของประชากรทั้ง 2 กลุ่มไม่แตกต่างกัน หรือ H0 : $_{1} = _{2}$

H1 : การกระจายข้อมูลของประชากรทั้ง 2 กลุ่มแตกต่างกัน หรือ H1 : ₁≠ σ ₂ ตัวสถิติที่ใช้ทดสอบคือ **F-Test**

ตัวอย่าง ผู้วิจัยต้องการทราบว่าก่าใช้จ่ายแต่ละวันระหว่างนักศึกษา 2 คณะแตกต่างกันหรือไม่ สมมติฐานทางสถิติH0 : ก่าใช้จ่ายนักศึกษา 2 คณะไม่แตกต่างกัน หรือ H0 : μ₁ = μ₂

H1 : ค่าใช้ง่ายนักศึกษา 2 คณะแตกต่างกัน หรือ H1 : μ₁ ≠ μ₂

- 1. เปิดไฟล์ DATA12a.sav
- 2. เลือกเมนู Analyze -> Compare Means -> Independent Samples T Test

Independent-Samp	les T Te	st		
	Þ	Test Variable(s): ∲ expenses	-	OK Paste Reset Cancel Help
		Grouping Variable: faculty(1-2)		
1		Define Groups	0	otions

เลือกตัวแปร expenses คลิกปุ่ม 💽 เก็บไว้ในบ๊อกซ์ Test Variable(s)

เลือกตัวแปร faculty คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Grouping Variable

3. คลิกปุ่ม Define Groups

Define Groups		
 Use specified values 	Continue	
Group 1: 1	Cancel	
Group 2: 2	Help	
C Cut point:		

Group 1 พิมพ์ 1

Group 2 พิมพ์ 2

คลิกปุ่ม Continue

4. คลิกปุ่ม OK จะได้ผลลัพธ์

T-Test

	Group Statistics				
	faculty	N	Mean	Std. Deviation	Std. Error Mean
expenses	1.00	10	130.5000	29.66948	9.38231
	2.00	8	136.2500	37.00869	13.08455

Independent Samples Test

		Levene's Test for Equality of Variances				t-tes	t for Equality of Mea	ns		
								Std. Error	95% Confider the Diff	ice Interval of erence
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Difference	Lower	Upper
expenses	Equal variances assumed	.983	.336	366	16	.719	-5.75000	15.69186	-39.01525	27.51525
	Equal variances not assumed			357	13.312	.727	-5.75000	16.10072	-40.45087	28.95087

ความหมายของผลลัพธ์

Group Statistics

Ν	จำนวนข้อมูลของแต่ละกลุ่มย่อย		
Mean	ค่าเฉลี่ขของค่าใช้จ่ายแต่ละกลุ่มย่อย		
Std. Deviation	ค่าส่วนเบี่ยงเบนมาตรฐานของค่าใช้จ่ายแต่ละกลุ่มย่อย		
Std. Error Mean	ค่าความคาดเคลื่อนมาตรฐานของค่าใช้จ่ายแต่ละกลุ่มย่อย		

ให้พิจารณา 2 ขั้นตอน

ขั้นตอนที่ 1 ด้องทำการทดสอบการกระจายของข้อมูลประชากรก่อนว่าแตกต่างกันหรือไม่

ให้พิจารณาค่าสถิติจากคอลัมน์ Levene's Test for Equality of Variances

F	ค่าสถิติที่กำนวณได้จากข้อมูลตัวอย่างใช้เทียบก่าจากตาราง F มาตราฐาน
Sig.	ค่าความน่าจะเป็นในการขอมรับหรือปฏิเสธสมมติฐาน H0

การทดสอบการกระจายของข้อมูลประชากรก่อนว่าแตกต่างกันหรือไม่

กำหนดสมมติฐานทางสถิติ
H0 : การกระจายข้อมูลของประชากรทั้ง 2 กลุ่มไม่แตกต่างกัน หรือ H0 : $_{1}$ = $_{2}$
H1 : การกระจายข้อมูลของประชากรทั้ง 2 กลุ่มแตกต่างกัน หรือ H1 : ₁≠ σ ₂
โดยกำหนด = 0.05
ให้ดูก่า Sig. ตรงบรรทัด Equal variances assumed
ค่า Sig. ที่คำนวณได้เท่ากับ 0.336
จะปฏิเสธสมมติฐาน H0 เมื่อ ค่า Sig. มีค่าน้อยกว่า ที่ผู้วิจัยกำหนด
ค่า Sig. มากกว่า (0.336 > 0.05)
ดังนั้นจึงตัดสินใจ ขอมรับสมมติฐาน H0 : 1 = 2
สรุปผลได้ว่า การกระจายข้อมูลของประชากรทั้ง 2 กลุ่มไม่แตกต่าง

้**ขั้นตอนที่ 2** หลังจากทราบการกระจายของข้อมูลว่าแตกต่างกันหรือไม่ ให้พิจารณาผลลัพธ์ถัคไป

ให้พิจารณาค่าสถิติจากคอลัมน์ t-test for Equality of Means

t, df	ค่าสถิติที่คำนวณได้จากข้อมูลตัวอย่าง
Sig.(2-tailed)	ค่าความน่าจะเป็นในการขอมรับหรือปฏิเสธสมมติฐาน H0
Mean Difference	ค่าผลต่างระหว่างค่าเฉลี่ยทั้ง 2 กลุ่ม
Std. Error Difference	ค่าความคาดเคลื่อนมาตรฐานของค่าผลต่าง
95% Confidence	ค่าที่แสดงขอบเขตช่วงกวามเชื่อมั่น 95% ของผลต่างก่าเฉลี่ย

ถ้าการกระจายของข้อมูลไม่แตกต่างกัน (1= 2) ให้ดูแถว Equal variances assumed

ถ้าการกระจายของข้อมูลแตกต่างกัน(_1 ≠ **0** 2) ให้ดูแถว Equal variances not assumed

เพื่อใช้ในการตัดสินใจของสมมติฐานทางสถิติของการวิจัยต่อไป

จากขั้นตอนที่ 1 ทราบว่าการกระจายข้อมูลของประชากรทั้ง 2 กลุ่มไม่แตกต่างกัน (1= 2)

ให้ดูค่า Sig.(2-tailed) ตรงบรรทัด Equal variances assumed

ค่า Sig.(2-tailed) ที่คำนวณได้เท่ากับ 0.719 จะปฏิเสธสมมติฐาน H0 เมื่อ ค่า Sig. มีค่าน้อยกว่า ที่ผู้วิจัยกำหนด ค่า Sig.(2-tailed) มากกว่า (0.719 > 0.05) ดังนั้นจึงตัดสินใจ ขอมรับสมมติฐาน H0 : μ₁ = μ₂ สรุปผลได้ว่า ค่าใช้จ่าขของนักศึกษาทั้ง 2 คณะไม่แตกต่างกันที่ระดับนัยสำคัญ 0.05 สมมติฐานแบบ 2 ทาง ค่า 95% สามารถสรุปผลได้ว่า ค่าใช้จ่าขของนักศึกษาทั้ง 2 คณะไม่แตกต่าง กัน ตั้งแต่ -39.01 ถึง 27.51 บาท ที่ช่วงความเชื่อมั่น 95%

จากขั้นตอนที่ 1 สมมติว่าการกระจายข้อมูลของประชากรทั้ง 2 กลุ่มแตกต่างกัน (₁ ≠ **O**₂)

ให้ดูค่า Sig.(2-tailed) ตรงบรรทัด Equal variances not assumed

ค่า Sig.(2-tailed) ที่คำนวณได้เท่ากับ 0.727

จะปฏิเสธสมมติฐาน H0 เมื่อ ค่า Sig. มีค่าน้อยกว่า ที่ผู้วิจัยกำหนด

ค่า Sig.(2-tailed) มากกว่า (0.727 > 0.05)

ดังนั้นจึงตัดสินใจ ยอมรับสมมติฐาน H0 : $\mu_1 = \mu_2$

สรุปผลได้ว่า ค่าใช้ง่ายของนักศึกษาทั้ง 2 คณะไม่แตกต่างกันที่ระดับนัยสำคัญ 0.05 สมมติฐานแบบ 2 ทาง ค่า 95% สามารถสรุปผลได้ว่า ค่าใช้ง่ายของนักศึกษาทั้ง 2 คณะไม่แตกต่างกัน ตั้งแต่ -40.45 ถึง 28.95 บาท ที่ช่วงความเชื่อมั่น 95%

การทดสอบค่าเฉลี่ยของข้อมูล 2 กลุ่มแบบน็อนพาราเมตริก กรณี 2 กลุ่มเป็นอิสระต่อกัน

เป็นข้อมูลตัวอย่างที่จะนำมาทคสอบที่เลือกจากประชากรที่**ไม่ทราบการแจกแจง หรือทราบการ** แจกแจงแต่ไม่ใช่การแจกแจงแบบปกติ กลุ่มตัวอย่างที่นำมาทดสอบมีจำนวนน้อย (น้อยกว่า 30) ตัวแปรที่นำมาทคสอบต้องเป็นข้อมูลเชิงปริมาณ(กำนวณได้)และตัวแปรเชิงกุณภาพ(กำนวณ

ไม่ได้)

ตัวสถิติที่ใช้ในการทดสอบคือ NPar-Test

ตัวอย่าง สมมติฐานทางสถิติ

H0 : เวลาที่ใช้ในการทานอาหารของเพศชายและหญิงไม่แตกต่างกัน หรือ H0 : μ₁ = μ₂ H1 : เวลาที่ใช้ในการทานอาหารของเพศชายและหญิงไม่แตกต่างกัน หรือ H1 : μ₁ ≠ μ₂

- 1. เปิดไฟล์ DATA12B.sav
- 2. เถือกเมนู Analyze -> Nonparametric Test -> 2 Independent Samples

Two-Independent-Samples Tests	
Test Variable List:	OK Paste Reset
Grouping Variable: sex(1 2) Define Groups	Cancel Help
✓ Mann-Whitney U □ Kolmogorov-Smirnov Z □ Moses extreme reactions □ Wald-Wolfowitz runs	
Options	

เลือกตัวแปร minute คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Test Variable(s)

เลือกตัวแปร sex คลิกปุ่ม เก็บไว้ในบ๊อกซ์ Grouping Variable

3. คลิกปุ่ม Define Groups

Two Independent Samples: Defi 🚺				
Group 1:	1	Continue		
Group 2:	2	Cancel		
		Help		
Group 1 พิมา	พี้ 1			
Group 2 ฟิมเ	พัว			

คลิกปุ่ม Continue

4. คลิกปุ่ม OK จะได้ผลลัพธ์

NPar Tests

Mann-Whitney Test

Ranks

	sex	N	Mean Rank	Sum of Ranks
minute	Male	10	11.60	116.00
	Female	8	6.88	55.00
	Total	18		

Test Statistics^b

	minute
Mann-Whitney U	19.000
Wilcoxon W	55.000
z	-1.928
Asymp. Sig. (2-tailed)	.054
Exact Sig. [2*(1-tailed Sig.)]	.068 ^a
a. Not corrected for ties .	

b. Grouping Variable : sex

ความหมายของผลลัพธ์

Ranks

sex	ชื่อตัวแปรที่เป็นตัวแบ่งกลุ่มพร้อมแสดงก่า
Ν	จำนวนข้อมูลของแต่ละกลุ่มย่อย
Mean Rank	ค่าเฉลี่ขของอันคับในแต่ละกลุ่ม
Sum of Ranks	ค่าผลรวมของอันคับในแต่ละกลุ่ม

Test Statistics

Mann-Whitney U	ค่าสถิติ U ที่ใช้เปรียบเทียบกับค่าที่ได้จากตาราง U
	มาตรฐาน
Wilcoxon W	ค่าผลรวมของอันคับที่มีค่าน้อยจะใช้ค่านี้เทียบกับค่าที่ได้
	จากตาราง W มาตรฐาน
Ζ	ค่าสถิติ Z ใช้แทน U เมื่อข้อมูลมีจำนวนมาก
Asymp. Sig. (2-tailed)	ค่าความน่าจะเป็นในการขอมรับสมมติฐาน
Exact Sig. [2*(1-tailed Sig.)]	ค่าความน่าจะเป็นในการขอมรับสมมติฐาน เมื่อข้อมูลมี
	จำนวนน้อย ถ้าเป็นการทคสอบแบบทางเดียวจะต้องนำค่านี้
	ไปหารด้วย 2

จะปฏิเสธสมมติฐาน H0 เมื่อค่า Asymp. Sig. หรือ Exact Sig. มีค่าน้อยกว่าค่า ที่ผู้วิจัยกำหนด จากตัวอย่างกลุ่มตัวอย่างมีขนาดเล็กจะพิจารณาจากค่า Exact Sig. คือ 0.068 ซึ่งมีค่ามากกว่า ที่ กำหนดไว้ 0.05

การตัดสินใจ ยอมรับสมมติฐาน H0 : $\mu_1 = \mu_2$

สรุปผลได้ว่า เวลาที่ใช้ในการทานอาหารของเพศชายและหญิงไม่แตกต่างกันที่ระดับนัยสำคัญ

2. กรณีที่ 2 กลุ่มตัวอย่างเป็นแบบจับคู่ที่มีความสัมพันธ์กัน

0.05

เป็นการทคสอบความแตกต่างของค่าเฉลี่ยระหว่างกลุ่ม 2 กลุ่มตัวอย่าง เมื่อข้อมูลตัวอย่างที่จะใช้ ทคสอบมีความสัมพันธ์กัน

การทคสอบแบบนี้ จะเป็นการทคสอบความแตกต่างเป็นกู่ๆ โดยแต่ละกู่มีความสัมพันธ์กัน จึงเรียก การทคสอบนี้อีกอย่างหนึ่งคือ การทคสอบความแตกต่างแบบจับกู่ (Paired Difference Tests)

การพิจารณาว่ากลุ่มตัวอย่างจะใช้การทดสอบแบบจับคู่ที่มีความสัมพันธ์กัน ให้พิจารณาจาก

- การเปรียบเทียบวิธีการ 2 วิธีกับข้อมูลชุคเคียวกัน เช่นผลต่างของคะแนนก่อนอบรมและหลัง อบรม ข้อมูลที่ได้แต่ละคู่มาจากคนเดียวกัน
- การเปรียบเทียบข้อมูล 2 ชุดกับคุณสมบัติที่เหมือนกัน เช่น นำข้าราชการที่มีระดับการศึกษา และมีประสบการณ์ในการทำงานเหมือนกันมาเปรียบเทียบเงินเดือนเป็นลู่
- การเปรียบเทียบข้อมูล 2 ประเภทที่ได้มาจากแหล่งข้อมูลเดียวกัน เช่น การเปรียบเทียบ ขอดขายสินค้า 2 ยี่ห้อ มาจากร้านค้า 20 ร้านค้า
- การเปรียบเทียบข้อมูล 2 ประเภทที่ได้มาจากช่วงเวลาเดียวกัน เช่น ยอดขายอาหารของ ร้านอาหาร 2 ร้าน ที่ได้ในแต่ละวันในเดือนเดียวกัน

การทดสอบค่าเฉลี่ยของข้อมูล 2 กลุ่ม แบบพาราเมตริก กรณี 2 กลุ่มตัวอย่างมีความสัมพันธ์กัน

เป็นการทคสอบเมื่อผลต่างของข้อมูล 2 กลุ่ม มีคุณสมบัติที่สามารถทำการทคสอบแบบพาราเมตริก กล่าวคือ ค่าของผลต่างที่ได้จากการวัดอยู่ในระดับช่วงหรืออัตราส่วน และต้องมีการแจกแจงแบบปกติ หรือใกล้เคียงแบบปกติ

ด้วสถิติที่ใช้ในการทดสอบคือ **T-Test**

ตัวอย่าง ผู้วิจัยต้องการทดสอบว่าการอบรมจะทำให้ผู้เรียนมีความรู้เพิ่มขึ้นหรือไม่

กำหนดสมมติฐานทางสถิติ

- H0 : คะแนนเฉลี่ยก่อนและหลังการอบรมไม่แตกต่างกัน หรือ H0 : µ_d = 0
- H1 : คะแนนเฉลี่ยก่อนและหลังการอบรมแตกต่างกัน หรือ H1 : µ,≠ 0
- 1. เปิดไฟล์ DATA13A.sav
- 2. เลือกเมนู Analyze -> Compare Means -> Paired-Samples T Test

Paired-Samples T Te	st		X
Before Course [pre]		Paired Variables:	OK
After Course [post]		pre post	Paste
			Reset
			Cancel
			Help
Current Selections			
Variable 1:			
Variable 2:			Options

เลือกตัวแปร pre และ post คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Paired Variables

กลิกปุ่ม OK จะได้ผลลัพธ์ T-Test

	Paired Samples Statistics				
		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Before Course	65.8000	10	24.10532	7.62277
	After Course	69.7000	10	22.29624	7.05069

		N	Correlation	Sig.
Pair 1	Before Course & After Course	10	.972	.000

Paired Differences									
					95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	Before Course - After Course	-3.90000	5.74360	1.81628	-8.00872	.20872	-2.147	9	.060

ความหมายของผลลัพธ์ มี 2 ขั้นตอน

ขั้นตอนที่ 1 พิจาราณว่าข้อมูล 2 กลุ่มมีความสัมพันธ์กันหรือไม่

Paired Samples Correlations เป็นส่วนแสดงก่าสถิติสัมประสิทธิ์สหสัมพันธ์

Correlation	ค่าสัมประสิทธิ์สหสัมพันธ์ของเปียร์สัน (r) ที่แสคงถึงความสัมพันธ์ของ 2			
	กลุ่มที่นำมาทคสอบ ค่าที่ได้ 0.972 แสดงว่ากะแนนก่อนและหลังการอบรม			
	มี ความสัมพันธ์กันค่อนข้างสูง และไปในทิศทางเดียวกัน			
	-1 r 1			
	บวก ทิศทางเดียวกัน			
	ลบ ทิศทางเดียวตรงข้าม			
Sig.	ค่าความน่าจะเป็นที่จะใช้ในการทคสอบสมมติฐานเกี่ยวกับความสัมพันธ์			
	ภายใต้สมมติฐานทางสถิติ ดังนี้			
	H0 : คะแนนทคสอบก่อนและหลังการอบรมไม่มีความสัมพันธ์กัน			
	Hl : คะแนนทคสอบก่อนและหลังการอบรมมีความสัมพันธ์กัน			

ค่า Sig. เท่ากับ 0.000 มีค่าน้อยกว่าค่า ที่ผู้ทคสอบกำหนดคือ 0.05 การตัดสินใจ ปฏิเสธสมมติฐาน H0 ยอมรับ H1

สรุปผลได้ว่า คะแนนก่อนและหลังการอบรมมีความสัมพันธ์กันทางสถิติที่ระดับนัยสำคัญ 0.05 ถ้าข้อมูล 2 กลุ่มไม่มีความสัมพันธ์กัน ไม่ควรใช้กรณีนี้ทดสอบ และไม่ต้องดูผลลัพธ์ในส่วนถัดไป

ขั้นตอนที่ 2 ข้อมูล 2 กลุ่มมีความสัมพันธ์กัน

Mean	ค่าเฉลี่ยของผลต่างระหว่างคะแนนก่อนและหลังการอบรม
Std. Deviation	ค่าส่วนเบี่ยงเบนมาตรฐานของผลต่าง
Std. Error Mean	ค่าความคาดเกลื่อนมาตรฐานของผลต่าง
95% Confidence	ค่าที่แสดงขอบเขตช่วงความเชื่อมั่น 95% ของผลต่างค่าเฉลี่ย
t, df	ค่าสถิติที่คำนวณได้จะใช้เทียบกับค่าจากตารางมาตรฐาน
Sig.(2-tailed)	ค่าความน่าจะเป็นในการขอมรับหรือปฏิเสธสมมติฐาน H0

Paired Samples Test แสดงก่าสถิติสำหรับใช้ในการทดสอบก่าเฉลี่ย

ค่า Sig.(2-tailed) เท่ากับ 0.060 มีค่ามากกว่าค่า ที่ผู้วิจัยกำหนดคือ 0.05

การตัดสินใจ ยอมรับสมมติฐาน H0

สรุปผลได้ว่า คะแนนก่อนและหลังการอบรมไม่แตกต่างกันที่ระดับนัยสำคัญ 0.05

้การทดสอบค่าเฉลี่ยของข้อมูล 2 กลุ่ม แบบน็อนพาราเมตริก กรณี 2 กลุ่มตัวอย่างมีความสัมพันธ์กัน

ตัวแปรที่ทดสอบหรือผลต่างของตัวแปรที่จะทดสอบมีการวัดเพียงระดับเรียงอันดับเท่านั้น ตัวสถิติที่ใช้ในการทดสอบคือ Wilcoxon matched-pairs signed-rank test ซึ่งเป็น การทดสอบเชิงอันดับ

ตัวอย่าง ผู้วิจัยต้องการทดสอบความแตกต่างของจำนวนสินก้าที่ไม่มีคุณภาพระหว่างผู้ที่มีและ ไม่มีประสบการณ์ในการทำงาน

กำหนดสมมติฐานทางสถิติแบบสองทาง

H0 : จำนวนสินค้าที่ไม่มีคุณภาพที่ผลิตโดยคนงาน 2 กลุ่มมีจำนวนเฉลี่ยไม่แตกต่างกัน

H1 : จำนวนสินค้าที่ไม่มีคุณภาพที่ผลิต โดยคนงาน 2 กลุ่มมีจำนวนเฉลี่ยแตกต่างกัน กำหนดเป็นสัญญาลักษณ์ทางสถิติ

 $H0: \mu_{l \downarrow j \downarrow j} = \mu_{j \downarrow}$

 $H1: \mu_{l_{JJ}J} \neq \mu_{JJ}$

กำหนดสมมติฐานทางสถิติแบบทางเดียว

- H0 : จำนวนสินค้าที่ไม่มีคุณภาพที่ผลิตโดยคนงานที่ไม่มีประสบการณ์มีจำนวนเฉลี่ย น้อยกว่าหรือเท่ากับที่ผลิตโดยคนงานที่มีประสบการณ์
- H1 : จำนวนสินก้าที่ไม่มีกุณภาพที่ผลิต โดยคนงานที่ไม่มีประสบการณ์มีจำนวนเฉลี่ย มากกว่าที่ผลิต โดยคนงานที่มีประสบการณ์

กำหนดเป็นสัญญาลักษณ์ทางสถิติ

 $H0: \mu_{l_{1}j_{1}j_{1}} \qquad \mu_{j_{1}}$

 $H1: \mu_{l_{i}l_{i}j_{i}} > \mu_{j_{i}}$

การใช้โปรแกรมวิเคราะห์ข้อมูล

- 1. เปิดไฟล์ DATA13B.sav
- 2. เถือกเมนู Analyze -> Nonparametric Test -> 2 Related Samples

Two-Related-Sampl	es Tests		
texp texp		Test Pair(s) List: exp non_exp	OK Paste Reset Cancel Help
Current Selections Variable 1: Variable 2:		Test Type Vilcoxon Sign McNemar Options	

เลือกตัวแปร exp และ non_exp คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Test Pair(s) List

คลิกปุ่ม OK จะได้ผลลัพธ์

NPar Tests

Wilcoxon Signed Ranks Test

D	1.0		•	L		
	10	•	•	n	1	9

		N	Mean Rank	Sum of Ranks
non_exp - exp	Negative Ranks	2 ^a	6.50	13.00
	Positive Ranks	13 ^b	8.23	107.00
	Ties	1 ^c		
	Total	16		

a. tot_exp < exp b. tot_exp > exp

с. ю ехр – ехр

Test Statistics^b

	non_e×p · e×p
z	-2.841 ^a
Asymp. Sig. (2-tailed)	.005
a. Based on negative ranks.	

b. Wilcoxon Signed Ranks Test

ความหมายของผลลัพธ์

Wilcoxon Signed Ranks Test เป็นส่วนแสดงค่าสถิติของการจัดอันดับของผลต่างระหว่างตัวแปร

Ν	แสดงจำนวนคู่ของผลต่างระหว่างตัวแปร
Negative Ranks	จำนวนคู่ของตัวแปรที่เป็นตัวลบ น้อยกว่า ตัวตั้ง
Positive Ranks	จำนวนคู่ของตัวแปรที่เป็นตัวลบ มากกว่า ตัวตั้ง
Ties	จำนวนกู่ของตัวแปรที่เป็นตัวลบ เท่ากับ ตัวตั้ง
Total	จำนวนกู่ทั้งหมด

Mean Rank ค่าเฉลี่ยของอันดับในแต่ละกลุ่ม

Sum of Ranks ค่าผลรวมของอันดับในแต่แต่ละกลุ่ม

Test Statistics เป็นส่วนแสดงค่าสถิติ Wilcoxon ที่ใช้ในการทดสอบความแตกต่างของค่าเฉลี่ย

Z	ค่าสถิติ Z ใช้แทนค่า Wilcoxon เมื่อข้อมูลมีจำนวนมาก ค่า Z จากคู่
	ที่มีผลต่างเป็นลบ จะใช้ค่านี้สำหรับการสรุปผลที่ต้องอาศัยตาราง
	สถิติมาตรฐานของ Z
Asymp. Sig. (2-tailed)	ค่าความน่าจะเป็นในการขอมรับหรือปฏิเสธสมมติฐาน โดยไม่
	ต้องใช้อาศัยตารางสถิติมาตรฐาน

การสรุปผล กรณีที่กำหนดสมมติฐานแบบสองทาง H0 : μ_{ไม่มี} = μ_{มี} H1 : μ_{ไม่มี} ≠ μ_{มี} เมื่อกำหนด เป็น 0.05 จะปฏิเสธสมมติฐาน H0 เมื่อ ค่า Asymp. Sig. มีค่าน้อยกว่า ที่ผู้วิจัยกำหนด

จากตัวอย่าง ค่า Asymp. Sig. เท่ากับ 0.005 มีค่าน้อยกว่า ที่กำหนดไว้กือ 0.05 การตัดสินใจ ปฏิเสธสมมติฐาน H0 : μ_{ไม่มี} = μ_{มี} ยอมรับ H1 : μ_{ไม่มี} ≠ μ_{มี} สรุปผลได้ว่า จำนวนสินก้าที่ไม่มีคุณภาพที่ผลิตโดยคนงาน 2 กลุ่มมีจำนวนเฉลี่ยแตกต่างกัน

กรณีที่กำหนดสมมติฐานแบบทางเดียว H0 : μ_{ไม่มี} μ_{มี} H1 : μ_{ไม่มี} > μ_{มี} เมื่อกำหนด เป็น 0.05 จะปฏิเสธสมมติฐาน H0 เมื่อ ค่า Asymp. Sig. หารด้วย 2 มีค่าน้อยกว่า ที่ผู้วิจัยกำหนด จากตัวอย่าง ค่า Asymp. Sig. เท่ากับ 0.005/2 = 0.0025 มีค่าน้อยกว่า ที่กำหนดไว้คือ 0.05 การตัดสินใจ ปฏิเสธสมมติฐาน H0 : μ_{ไม่มี} = μ_{มี} ยอมรับ H1 : μ_{ไม่มี} ≠ μ_{มี} สรูปผลได้ว่า จำนวนสินค้าที่ไม่มีคุณภาพ ซึ่งผลิตโดยคนงานที่ไม่มีประสบการณ์จะมีจำนวน

มากกว่าผู้ที่มีประสบการณ์ที่ระดับนัยสำคัญ 0.05

การทดสอบค่าเฉลี่ยสำหรับหลายกลุ่มตัวอย่าง โดยวิเคราะห์ความแปรปรวน

เป็นการศึกษาเปรียบเทียบและตรวจสอบว่าคุณลักษณะใคคุณลักษณะหนึ่งของข้อมูลตั้งแต่ 3 กลุ่มขึ้นไปมี ความแตกต่างกันหรือไม่ และถ้าแตกต่างกันนั้นแตกต่างกันอย่างไร โคยพิจารณาจกก่าเฉลี่ยของคุณลักษณะนั้นๆ

ตัวสถิติที่ใช้ในการทคสอบความแตกต่างระหว่างค่าเฉลี่ยสำหรับหลายกลุ่มตัวอย่างคือ <mark>การวิเคราะห์ความ</mark> แปรปรวน (Analysis of Variances : ANOVA)

การวิเคราะห์ความแปรปรวน หรือนิยมเรียกย่อๆ ว่า ANOVA เป็นวิถีทางสถิติวิธีหนึ่งที่ใช้ในการศึกษาหา ความสัมพันธ์ระหว่างตัวแปร 2 ประเภท คือตัวแปรตาม (Dependent) และตัวแปรอิสระ (Independent) โดยใช้ตัว <u>แปรอิสระ</u>เป็นตัวแบ่งข้อมูลออกเป็นกลุ่มๆ เพื่อทคสอบว่าในแต่ละกลุ่มที่แตกต่างกันนั้นจะทำให้ค่าเฉลี่ยของ<u>ตัว</u> <u>แปรตาม</u>แตกต่างกันหรือไม่ บางครั้งอาจเรียกตัวแปรอิสระว่า ปัจจัย (Factor)

<u>ประเภทของการวิเคราะห์ความแปรปรวน</u>

1. การวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียว (One-Way ANOVA)

เป็นการวิเคราะห์ความแปรปรวนที่ใช้กับข้อมูลที่ได้จากการจำแนกหรือแบ่งกลุ่มโดยใช้หลักเกณฑ์แบบเดียว หรือปัจจัยเดียว

2. การวิเคราะห์ความแปรปรวนแบบจำแนกสองทาง (Two-Way ANOVA)

เป็นการวิเคราะห์ความแปรปรวนที่ใช้กับข้อมูลที่ได้จากการจำแนกหรือแบ่งกลุ่มโดยใช้หลักเกณฑ์สองแบบ หรือสองปัจจัย

3.การวิเคราะห์ความแปรปรวนแบบจำแนกหลายทาง (Multi-Way ANOVA)

เป็นการวิเคราะห์ความแปรปรวนที่ใช้กับข้อมูลที่ได้จากการจำแนกหรือแบ่งกลุ่มโดยใช้หลักเกณฑ์ตั้งแต่สาม แบบเดียวหรือสามปัจจัยขึ้นไป

วิธีการวิเคราะห์ความแปรปรวนแบ่งได้ 2 วิธี

- 1. การวิเคราะห์ความแปรปรวนโดยวิธีพาราเมตริก
- การวิเคราะห์ความแปรปรวนโดยวิธีนี้อนพาราเมตริก

การวิเคราะห์ความแปรปรวนจำแนกทางเดียวแบบพาราเมตริก

้ คุณลักษณะของข้อมูลมีข้อกำหนดดังนี้

- 1. ข้อมูลแต่ละกลุ่มย่อยจะต้องมาจากประชากรที่มีการกระจายหรือความแปรปรวนไม่แตกต่างกันทางสถิติ
- 2. ข้อมูลแต่ละกลุ่มย่อยที่เลือกมาทคสอบมาจากประชากรที่มีการแจกแจงแบบปกติ
- ตัวอย่างที่เลือกมาแต่ละกลุ่มควรจะต้องเป็นอิสระต่อกัน

ตัวอย่าง ผู้วิจัยต้องการทดสอบรากาสินก้ำชนิดหนึ่งที่ผลิตจากผู้ผลิตที่ใช้ยี่ห้อแตกต่างกันจำนวน 4 ยี่ห้อว่ามี

รากาจำหน่ายตามร้านต่างๆ แตกต่างกันหรือไม่

ยี่ห้อ เป็นตัวแปรอิสระที่ใช้ในการแบ่งกลุ่ม

ราคา เป็นตัวแปรตามที่จะหาค่าเฉลี่ยแตกต่างกันหรือไม่

กำหนดสมมติฐานทางสถิติ

H0 : ราคาเฉลี่ยของสินค้าแต่ละยี่ห้อไม่แตกต่างกัน หรือ H0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$

H1 : รากาเฉลี่ยของสินก้าแต่ละยี่ห้อแตกต่างกัน หรือ H1 : μ,≠ μ, สำหรับ i ≠ j

ถ้าขอมรับสมมติฐานจะสรุปได้ว่าสินค่า 4 ยี่ห้อ ราคาเฉลี่ยไม่แตกต่างกัน แต่ถ้าปฏิเสธสมมติฐาน แสดงว่ามี อย่างน้อย 2 ยี่ห้อราคาเฉลี่ยแตกต่างกัน แต่ไม่สามารถบอกได้ว่ายี่ห้อไหนบ้างที่แตกต่างกัน ถ้าต้องการว่ามี 2 ยี่ห้อใดบ้างที่มีราคาเฉลี่ยแตกต่างกัน จะต้องคำเนินการทดสอบต่อไปโดยใช้วิธีการเปรียบเทียบแบบพหุคูณ

(Multiple Comparison Test)

การใช้โปรแกรมทดสอบค่าเฉลี่ยหลายกลุ่มแบบพาราเมตริก ต้องคำเนินการ 2 ขั้นตอน

- 1. การใช้โปรแกรมตรวจสอบคุณลักษณะของข้อมูล
- 2. การใช้โปรแกรมวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียวแบบพาราเมตริก

การใช้โปรแกรมตรวจสอบคุณสมบัติของข้อมูล

- 1. เปิดไฟล์ DATA14A.sav
- เลือกเมนู Analyze -> Descriptive Statistics -> Explore

Explore	
	Dependent List: OK Paste
	Factor List:
	Label Cases by:
● Both ● Statistics ● Plots	Statistics Plots Options

เลือกตัวแปร price คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Dependent List

เลือกตัวแปร brand คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Factor List

3. คลิกปุ่ม Plots

เลือก Normality plots with test เพื่อตรวจสอบข้อมูลมีการแจกแจงแบบปกติหรือไม่ เลือก Power estimation เพื่อตรวจสอบข้อกำหนดของความแปรปรวน

4. กลิดปุ่ม OK จะได้ผลลัพธ์

		Kolmogorov-Smirnov ^a		Shapiro-Wilk			
	brand	Statistic	df	Sig.	Statistic	df	Sig.
price	1	.171	6	.200*	.966	6	.863
	2	.175	5	.200*	.974	5	.899
	з	.298	4		.926	4	.572
	4	.167	5	.200*	.943	5	.685

Tests of Normality

". This is a lower bound of the true significance

a. Lilletors Significance Correction

เป็นค่าสถิติของ Kolmogorov-Smirnov และ Shapiro-Wilk พร้อมค่าความน่าจะเป็น Sig.

้สำหรับทคสอบก่าตัวแปร price แต่ละกลุ่มมีการแจกแจงแบบปกติหรือไม่ภายใต้สมมติฐานทางสถิติ

H0 : ข้อมูลที่นำมาทคสอบแต่ละกลุ่มมีการแจกแจงไม่ใช่แบบปกติ

H1 : ข้อมูลที่นำมาทดสอบแต่ละกลุ่มมีการแจกแจงแบบปกติ

้ก่าสถิติ Shapiro-Wilk จะแสดงเมื่อข้อมูลน้อยกว่าหรือเท่ากับ 50

การตัดสินจะปฏิเสธสมมติฐาน H0 ถ้าค่า Sig. น้อยกว่าค่า ที่กำหนด

จากผลลัพธ์ที่ได้ ค่า Sig. เท่ากับ . แสดงว่าสรุปไม่ได้

ค่า Sig. ของ Kolmogorov-Smirnov มากกว่าค่า

ค่า Sig. ของ Shapiro-Wilk มากกว่าค่า

การตัดสินใจ ขอมรับสมมติฐาน H0 ทั้งของ Kolmogorov-Smirnov และ Shapiro-Wilk

สรุปผลได้ว่า ค่าตัวแปร price ในยี่ห้อ 1, 2 และ 4 มีการแจกแจงแบบปกติที่ระดับนัยสำคัญ 0.05 ส่วนยี่ห้อที่ 3 ยังสรุปไม่ได้

ข้อสังเกต ก่าความน่าจะเป็นของกลุ่ม 3 โปรแกรมไม่กำนวณออกมา เพราะจำนวนข้อมูลในกลุ่มนี้มี จำนวนน้อยเกินไป (น้อยกว่า 5) ดังนั้นผู้วิจัยต้องพิจารณาว่าในกลุ่ม 3 ควรจะตัดออกไปจากการวิเคราะห์เลยหรือ เพิ่มจำนวนข้อมูลในกลุ่มนี้ให้มากขึ้น

		Levene Statistic	df1	df2	Sig.
price	Based on Mean	.729	3	16	.550
	Based on Median	.595	3	16	.627
	Based on Median and with adjusted df	.595	3	12.217	.630
	Based on trimmed mean	.704	3	16	.564

Test of Homogeneity of Variance

เป็นก่าสถิติ Levene Statistic พร้อมก่าความน่าจะเป็น Sig. ที่คำนวณภายใต้เงื่อนไขต่างๆ ปกติจะใช้ก่า ความน่าจะเป็นที่กำนวณจากก่าเฉลี่ยพื้น (Based on Mean) เพื่อใช้ในการทคสอบการกระจายของข้อมูลแต่ละกลุ่ม ในรูปของความแปรปรวนว่าแต่ละกลุ่มมีความแตกต่างกันหรือไม่ภายใต้สมมติฐานทางสถิติ

H0 : ข้อมูลที่นำมาทคสอบแต่ละกลุ่มมีการกระจายไม่แตกต่างกัน

H1 : ข้อมูลที่นำมาทคสอบแต่ละกลุ่มมีการกระจายแตกต่างกัน

การตัดสินใจจะปฏิเสธสมมติฐาน H0 ถ้าค่า Sig. น้อยกว่าค่า ที่กำหนด

ค่า Sig. ที่ได้จาก Based on Mean มีค่ามากกว่าค่า

การตัดสินใจ ยอมรับสมมติฐาน H0

สรุปผลได้ว่า ค่าตัวแปร price ในแต่ละกลุ่มมีการกระจายไม่แตกต่างกัน

Normal Q-Q Plot of price

แสดงกราฟแบบ Normal Q-Q Plot สำหรับพิจารณาค่าตัวแปร price แต่ละกลุ่มมีการแจกแจงแบบปกติ การพิจารณากราฟที่ได้

จะพิจารณาจากจุดต่างๆ ที่เกิดขึ้นเทียบกับกราฟเส้นตรง กล่าวคือถ้าจุดอยู่ใกล้ๆ บริเวณกราฟ เส้นตรงมาก แสดงว่าข้อมูลมีการแจกแจงใกล้เคียงแบบปกติ ถ้าจุดอยู่ห่างจากกราฟเส้นตรงมาก แสดง ว่าข้อมูลมีการแจกแจงไม่ใช่แบบปกติ

จากตัวอย่าง ค่าตัวแปร price แต่ละกลุ่มมีการแจกแจงแบบปกติ

Detrended Normal Q-Q Plot of price

แสดงกราฟแบบ DetrendedNormal Q-Q Plot สำหรับพิจารณาค่าตัวแปร price แต่ละกลุ่มมีการแจกแจง แบบปกติ

การพิจารณากราฟที่ได้

จะพิจารณาจากจุดต่างๆที่เกิดขึ้นเทียบกับเส้นตรง กล่าวคือถ้าจุดอยู่ใกล้ๆ บริเวณเส้นตรงมาก แสดงว่าข้อมูลมีการแจกแจงใกล้เคียงแบบปกติ ถ้าจุดอยู่ห่างจากเส้นตรงมาก แสดงว่าข้อมูลมีการแจก แจงไม่ใช่แบบปกติ

แสดงกราฟแบบ Box-Plot เพื่อใช้ในการพิจารณาคุณลักษณะของข้อมูล 2 ลักษณะ

- พิจารณาเส้นกลางของ Box ซึ่งกี่คือค่า Median ใช้เพื่อการพิจารณาความเบ้ของกราฟ โค้งความถี่แต่ ละกลุ่ม ถ้าเส้นแกนกลางอยู่ใกล้เคียงกึ่งกลาง Box แสดงว่ากราฟมีลักษณะ ไม่เบ้
- ส่วนความสูงของ Box จะเป็นความสูงที่แทนค่าเฉลี่ยของข้อมูลแต่ละกลุ่ม ถ้าความสูงใกล้เคียงกัน แสดงว่าค่าเฉลี่ยในแต่ละกลุ่มใกล้เคียงกัน

Spread vs. Level Plot of price by brand

* Plot of LN of Spread vs LN of Level

Slope = 1.860 Power for transformation = -.860

แสดงกราฟแบบ Spread vs. Level Plot เพื่อเปรียบเทียบการกระจายของข้อมูลแต่ละกลุ่ม การพิจารณากราฟที่ได้

พิจารณาจากจุดต่างๆ ที่เกิดขึ้นในกราฟแต่ละกลุ่ม พบว่ากลุ่ม 1, 2 และ 3 มีการกระจายใกล้เคียงกัน ก่า Slop ถ้าต่างจาก 0 มากเท่าไรก็แสดงว่าถึงความแตกต่างของการกระจายแต่ละกลุ่มมากเท่านั้น

การใช้โปรแกรมวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียวแบบพาราเมตริก

1. เลือกเมนู Analyze -> Compare Means -> One-Way ANOVA

One-Way ANOVA		
	Dependent List:	OK Paste Reset Cancel
	Factor:	Help
	Contrasts Post Hoc Options	

เลือกตัวแปร price คลิกปุ่ม 뇬 เก็บไว้ในบ๊อกซ์ Dependent List เลือกตัวแปร brand คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Factor

2. คลิกปุ่ม Options

One-Way ANOVA: Options	×
Statistics Descriptive Fixed and random effects Homogeneity of variance test Brown-Forsythe Welch	Continue Cancel Help
 Means plot Missing Values Exclude cases analysis by analy Exclude cases listwise 	ysis

เลือก Descriptive ให้แสดงค่าสถิติเบื้องต้นของแต่ละกลุ่ม

เลือก Homogeneity of variance test ให้ก่าสถิติที่ใช้ทดสอบการกระจายของแต่ละกลุ่ม เลือก Means plot ให้แสดงกราฟเปรียบเทียบค่าเฉลี่ยในแต่ละกลุ่ม คลิกปุ่ม Continue

3. คลิกปุ่ม Post Hoc ถ้าต้องการค่าสถิติที่ใช้ในการทคสอบจับคู่พหุคูณ

One-Way ANOVA:	Post Hoc Multiple Comparisons 🛛 🛛 🔀
Equal Variances Ass LSD Bonferroni Sidak Scheffe R-E-G-W F R-E-G-W Q	sumed S-N-K Waller-Duncan Tukey Type I/Type II Error Ratio: 100 Tukey's-b Dunnett Duncan Control Category: Last Hochberg's GT2 Gabriel C < Control C > Control
Equal Variances No	t Assumed Dunnett's T3 Games-Howell Dunnett's C
Significance level: .	
	Continue Cancel Help

กรณีความแปรปรวนไม่ต่างกันเลือก Scheffe

กรณีความแปรปรวนต่างกันเลือก Tamhane's T2

Significance level กำหนดค่า ตามที่ผู้วิจัยต้องการ คลิกปุ่ม Continue

4. คลิกปุ่ม OK จะได้ผลลัพธ์

Test of Homogeneity of Variances

price			
Levene Statistic	df1	df2	Sig.
.729	3	16	.550

เป็นค่าสถิติ Levene Statistic พร้อมค่าความน่าจะเป็น Sig. เพื่อตรวจสอบดูว่าข้อมูลที่นำมาใช้นี้สามารถ ใช้วิธีวิเคราะห์ความแปรปรวนแบบพาราเมตริกได้หรือไม่ โดยพิจารณาจากสมมติฐานทางสถิติ

H0 : ความแปรปรวนของราคาสินค้าในแต่ละกลุ่มไม่แตกต่างกัน

H1 : มีอย่างน้อย 2 กลุ่มที่ราคาสินค้ามีความแปรปรวนต่างกัน

การตัดสินจะปฏิเสธสมมติฐาน H0 ถ้าค่า Sig. น้อยกว่าค่า ที่กำหนด

ค่า Sig. ที่ได้ มีค่ามากกว่าค่า

การตัดสินใจ ยอมรับสมมติฐาน H0

สรุปผลได้ว่า ความแปรปรวนของราคาสินค้าไม่แต่ต่างกันที่ระคับนัยสำคัญ 0.05

price					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	547.217	3	182.406	24.004	.000
Within Groups	121.583	16	7.599		
Total	668.800	19			

_	 		_
•	n	u	•
н	 v	v	н

เป็นก่าสถิติต่างๆ ของการวิเคราะห์กวามแปรปรวน เพื่อใช้ทคสอบสมมติฐาน

H0 : ราคาเฉลี่ยของสินค้าแต่ละยี่ห้อไม่แตกต่างกัน

H1 : มีอย่างน้อย 2 ยี่ห้อที่มีรากาเฉลี่ยแตกต่างกัน

การตัดสินใจจะปฏิเสชสมมติฐาน H0 ถ้าค่า Sig. น้อยกว่าค่า ที่กำหนด

ค่า Sig. ที่ได้ มีค่าน้อยกว่าค่า

การตัดสินใจ ปฏิเสธสมมติฐาน H0 ขอมรับสมมติฐาน H1

สรุปผลใด้ว่า มีสินค้าอย่างน้อย 2 ยี่ห้อที่มีราคาเฉลี่ยแตกต่างกันที่ระดับนัยสำคัญ 0.05

ถ้ำมีการปฏิเสธสมมติฐาน H0 ให้พิจารณา

ต่อ

Dependent Variable: price

			Mean			95% Confide	ence Interval
	(I) brand	(J) brand	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Scheffe	1	2	3.63333	1.66922	.233	-1.5699	8.8365
		3	9.58333*	1.77939	.001	4.0367	15.1300
		4	-5.56667*	1.66922	.034	-10.7699	3635
	2	1	-3.63333	1.66922	.233	-8.8365	1.5699
		3	5.95000*	1.84920	.042	.1858	11.7142
		4	-9.20000*	1.74344	.001	-14.6346	-3.7654
	3	1	-9.58333*	1.77939	.001	-15.1300	-4.0367
		2	-5.95000*	1.84920	.042	-11.7142	1858
		4	-15.15000*	1.84920	.000	-20.9142	-9.3858
	4	1	5.56667*	1.66922	.034	.3635	10.7699
		2	9.20000*	1.74344	.001	3.7654	14.6346
		з	15.15000*	1.84920	.000	9.3858	20.9142
Tamhane	1	2	3.63333	1.51694	.220	-1.4638	8.7305
		3	9.58333*	1.49118	.001	4.3459	14.8208
		4	-5.56667	1.92902	.128	-12.4623	1.3289
	2	1	-3.63333	1.51694	.220	-8.7305	1.4638
		3	5.95000*	1.48408	.031	.5552	11.3448
		4	-9.20000*	1.92354	.012	-16.1724	-2.2276
	3	1	-9.58333*	1.49118	.001	-14.8208	-4.3459
		2	-5.95000*	1.48408	.031	-11.3448	5552
		4	-15.15000*	1.90329	.001	-22.2264	-8.0736
	4	1	5.56667	1.92902	.128	-1.3289	12.4623
		2	9.20000*	1.92354	.012	2.2276	16.1724
		3	15.15000*	1.90329	.001	8.0736	22.2264

แสดงค่าสถิติสำหรับทคสอบความแตกต่างของค่าเฉลี่ยแบบจับคู่ (Multiple Comparison)

้ ค่าของตัวทดสอบ Scheffe ใช้สำหรับกรณีความแปรปรวนไม่แตกต่างกัน

้ค่าของตัวทคสอบ Tamhaneใช้สำหรับกรณีความแปรปรวนแตกต่างกัน

การทคสอบค่าเฉลี่ยจะพิจารณาจากค่า Sig. ภายใต้สมมติฐานทางสถิติ

H0 : รากาเฉลี่ยของรากาสินค้า 2 ยี่ห้อที่กำลังพิจารณาไม่แตกต่างกัน

H1 : ราคาเฉลี่ยของราคาสินค้า 2 ยี่ห้อที่กำลังพิจารณาแตกต่างกัน

จากตารางผลลัพธ์ ยกตัวอย่างการจับกู่ระหว่าง กลุ่ม 2 กับกลุ่มอื่นๆ

2	1	-3.63333	1.66922	.233	-8.8365	1.5699
	з	5.95000*	1.84920	.042	.1858	11.7142
	4	-9.20000*	1.74344	.001	-14.6346	-3.7654

การตัดสินใจจะปฏิเสธสมมติฐาน H0 ถ้าค่า Sig. น้อยกว่าค่า ที่กำหนด (0.05)

้ ก่ากวามน่าจะเป็นในการขอมรับสมมติฐาน Sig. ของกลุ่มที่ 2 สำหรับทดสอบกับกลุ่มอื่นๆ ดังนี้

กับกลุ่ม 1 เท่ากับ 0.233 มีค่า มากกว่า ค่า	จึงยอมรับสมมติฐาน H0
กับกลุ่ม 3 เท่ากับ 0.042 มีค่า น้อยกว่า ค่า	จึงปฏิเสธสมมติฐาน H0
กับกลุ่ม 4 เท่ากับ 0.001 มีค่า น้อยกว่า ค่า	จึงปฏิเสธสมมติฐาน H0

สรุปผลได้ว่า กลุ่มที่ 2 ราคาเฉลี่ยไม่แตกต่างกับกลุ่มที่ 1 แต่แตกต่างกับกลุ่มที่ 3 และ 4 ให้ทดสอบการจับคู่ที่เหลือให้ครบ

Homogeneous Subsets

price						
				Subs	et for alpha = .(05
	brand	N		1	2	3
Scheffe ^{a,b}	3		4	49.2500		
	2		5		55.2000	
	1		6		58.8333	
	4		5			64.4000
	Sig.			1.000	.274	1.000

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 4,898.

b. The group sizes are usequal. The harmonic mean of the group sizes is used. Type Ferror levels are not grantabled.

ค่าสถิติ Scheffe ใช้สรุปความแตกต่างของราคาเฉลี่ย โดยจัดกลุ่มยี่ห้อที่มีราคาเฉลี่ยอยู่ในกลุ่มเดียวกัน การตัดสินใจจะปฏิเสธสมมติฐาน H0 ถ้าค่า Sig. น้อยกว่าค่า ที่กำหนด

ี่ ค่า Sig. ที่ได้ มีค่ามากกว่าค่า (0.274 > 0.05)

การตัดสินใจ ยอมรับสมมติฐาน H0

สรุปผลได้ว่า ยี่ห้อที่ 1 และ ยี่ห้อที่ 2 มีราคาเฉลี่ยไม่แตกต่างกัน

การวิเคราะห์ความแปรปรวนจำนวนทางเดียวแบบน็อนพาราเมตริก

เป็นการทคสอบเกี่ยวกับค่าเฉลี่ยของข้อมูลตั้งแต่ 3 กลุ่มขึ้นไป ที่ไม่สามารถใช้วิธีวิเคราะห์ความแปรปรวน แบบพาราเมตริก

้ข้อมูลที่จะนำมาวิเคราะห์ควรเป็นข้อมูลที่มีการวัดตั้งแต่ระดับเรียงอันดับขึ้นไป

สามารถจำแนกได้ 2 วิธี ตามคุณลักษณะของข้อมูล คือ กรณีที่ข้อมูลแต่ละกลุ่มเป็นอิสระต่อกัน และกรณีที่ ข้อมูลแต่ละกลุ่มมีความสัมพันธ์

ตัวอย่าง จะใช้ข้อมูลที่ใช้ทดสอบรากาของสินก้า 4 ยี่ห้อ โดยสมมติว่าที่ไม่สามารถใช้วิธีวิเกราะห์กวามแปรปรวน แบบพาราเมตริกได้ โดยกำหนดสมมติฐานทางสถิติดังนี้

H0 : อันคับเฉลี่ยของราคาสินค้าแต่ละยี่ห้อไม่แตกต่างกัน

H1 : มีอย่างน้อย 2 ยี่ห้อที่มีอันดับเฉลี่ยของราคาแตกต่างกัน

ถ้าขอมรับสมมติฐานสามารถสรุปได้ว่าอันดับเฉลี่ยของราคาสินค้าแต่ละยี่ห้อไม่แตกต่างกัน แต่ถ้าปฏิเสธ สมมติฐานแสดงว่ามีอย่างน้อย 2 ยี่ห้อที่มีอันดับเฉลี่ยของราคาแตกต่างกัน ถ้าต้องการทราบว่า 2 ยี่ห้อใดที่มีราคา แตกต่างกันก็สามารถทำได้โดยใช้วิธีจับคู่ที่ละคู่ที่เป็นไปได้โดยใช้วิธีการทดสอบแบบน็อนพาราเมตริกสำหรับ ข้อมูล 2 กลุ่มที่เป็นอิสระต่อกันของ Mann-Whiteney U

การใช้โปรแกรมวิเคราะห์ความแปรปรวนแบบจำแนกทางเดียวแบบน็อนพาราเมตริก

- 1. เปิดไฟล์ DATA14A.sav
- 2. เลือกเมนู Analyze -> Nonparametric -> K Independent Samples

Tests for Several Independent Samples					
	Test Variable List:	OK Paste Reset Cancel Help			
⊤Test Type ✓ Kruskal-Wallis H	☐ Median	Options			

เลือกตัวแปร price คลิกปุ่ม 🗾 เก็บไว้ในบ๊อกซ์ Test Variable List

เลือกตัวแปร brand คลิกปุ่ม 🚺 เก็บไว้ในบ๊อกซ์ Grouping Variable

3. คลิกปุ่ม Define Range

Define 💌
Continue
Cancel
Help

Minimum พิมพ์ 1

Maximum พิมพ์ 4

คลิกปุ่มContinue

4. คลิกปุ่ม Options

เลือก Descriptive

คลิกปุ่มContinue

5. คลิกปุ่ม OK จะได้ผลลัพธ์

NPar Tests

Descriptive Statistics						
N Mean Std. Deviation Minimum Maximum						
price	20	57.4000	5.93296	47.00	68.00	
brand	20	2.40	1.188	1	4	

Kruskal-Wallis Test

	brand	N	Mean Rank
price	1	6	12.25
	2	5	7.80
	з	4	2.63
	4	5	17.40
	Total	20	

Test Statistics ^{a,b}				
price				
Chi-Square	15.514			
df 3				
Asymp. Sig001				
a. Kruskal Wallis Test				
D. Grouping Variable : brand				

Test Statistics แสดงก่าสถิติ สำหรับทดสอบความแตกต่างของก่าเฉลี่ยของอันดับในแต่ละกลุ่มโดยก่าสถิติ ของ Kruskal-Wallis ซึ่งแปลงมาอยู่ในรูปของ Chi-Square : ² และก่าความน่าจะเป็น Asymp. Sig. ภายใต้ สมมติฐาน

H0 : อันดับเฉลี่ยของราคาสินค้ำแต่ละยี่ห้อไม่แตกต่างกัน

H1 : มีอย่างน้อย 2 ยี่ห้อที่มีอันดับเฉลี่ยของราคาแตกต่างกัน

การตัดสินใจจะปฏิเสธสมมติฐาน H0 ถ้าค่า Asymp. Sig. น้อยกว่าค่า ที่ผู้วิจัยกำหนด

ค่า Asymp. Sig. ที่ได้ มีค่าน้อยกว่าค่า (0.001 < 0.05)

การตัดสินใจ ปฏิเสธสมมติฐาน H0 ขอมรับสมมติฐาน H1

สรุปผลได้ว่า ความนิยมต่อสินค้า 4 ยี่ห้อของผู้บริ โภคมีสามนิยมแตกต่างกันอย่างน้อย 2 ยี่ห้อที่ระดับ นัยสำคัญ 0.05

้การทดสอบค่าเฉลี่ยสำหรับหลายกลุ่มตัวอย่าง โดยการวิเคราะห์ความแปรปรวนแบบสองทาง

การทดสอบค่าเฉลี่ยของข้อมูลที่ได้จากกลุ่มตัวอย่างตั้งแต่ 3 กลุ่มตัวอย่างขึ้นไป เมื่อมีการจำแนกหรือ แบ่งกลุ่มข้อมูล โดยใช้หลักเกณฑ์สองแบบหรือสองปัจจัย จะเป็นการทดสอบว่าการแบ่งกลุ่มดังกล่าวมีผลกระทบ ต่อค่าเฉลี่ยของคุณลักษณะที่สนใจหรือไม่

ข้อกำหนดของการวิเคราะห์ความแปรปรวนแบบจำแนก 2 ทางด้วยวิธีการพาราเมตริกจะขึ้นอยู่กับลักษณะของ ข้อมูลดังนี้

- ข้อมูลแต่ละกลุ่มย่อยจะต้องมาจากประชากรที่มีการกระจายหรือความแปรปรวนไม่แตกต่างกันทางสถิติ (²₁ = ²₂ = ²₃ ... ²_n)
- 2. ข้อมูลในแต่ละกลุ่มย่อยที่เลือกมาทคสอบควรมาจากประชากรที่มีการแจงแจงแบบปกติ
- ตัวอย่างที่มาแต่ละกลุ่มควรจะต้องเป็นอิสระต่อกัน

การวิเคราะห์ข้อมูล

้จะเป็นการวิเคราะห์เพื่อทดสอบผลกระทบของตัวแปรอิสระหรือปัจจัยต่างๆ จำแนกได้ 2 แบบ

- 1. สมมติฐานสำหรับการทดสอบผลกระทบของแต่ละปัจจัย
- สมมติฐานสำหรับการทดสอบผลกระทบร่วมของทั้ง 2 ปัจจัย
- 1. สมมติฐานสำหรับการทดสอบผลกระทบของแต่ละปัจจัย

เป็นการทคสอบความแตกต่างความแตกต่างของระคับต่างๆ ในแต่ละปัจจัยโคยจำแนกได้ 2 สมมติฐานตาม จำนวนปัจจัย

- H0 : ไม่มีความแตกต่างระหว่างระดับต่างๆ ของปัจจัยที่ 1
 H1 : มีอย่างน้อย 2 ระดับของปัจจัยที่ 1 ที่มีความแตกต่างกัน
 - H1 : มอยางนอย 2 ระดบของบจจยท 1 ทมความแตกตางกน
- H0 : ไม่มีความแตกต่างระหว่างระดับต่างๆ ของปัจจัยที่ 2

H1 : มีอย่างน้อย 2 ระดับของปัจจัยที่ 2 ที่มีความแตกต่างกัน

เนื่องจากการทคสอบจะพิจารณาในแง่ของก่าเฉลี่ยดังนั้นสมมติฐานทางสถิติอาจกำหนคได้ดังนี้

- H0 : ค่าเฉลี่ยของประชากรแต่ละกลุ่มที่จำแนก โดยปัจจัยหรือตัวแปรที่ 1 ไม่แตกต่างกัน H1 : มีอย่างน้อย 2 กลุ่มประชากรที่มีค่าเฉลี่ยแตกต่างกัน
- H0 : ค่าเฉลี่ยของประชากรแต่ละกลุ่มที่จำแนก โดยปัจจัยหรือตัวแปรที่ 2 ไม่แตกต่างกัน
 H1 : มีอย่างน้อย 2 กลุ่มประชากรที่มีค่าเฉลี่ยแตกต่างกัน

หรือกำหนดเป็นสัญญาลักษณ์ทางสถิติดังนี้

ป้จจัยที่ 1 H0 :
$$\mu_1 = \mu_2 = \mu_3 = ...\mu_m$$

H1 : $\mu_i \neq \mu_j (i \neq j)$
ป้จจัยที่ 2 H0 : $\mu_1 = \mu_2 = \mu_3 = ...\mu_n$
H1 : $\mu_i \neq \mu_i (i \neq j)$

2. สมมติฐานสำหรับการทดสอบผลกระทบร่วมของทั้ง 2 ปัจจัย

เป็นการทคสอบว่าปัจจัยทั้ง 2 มีผลกระทบร่วมกันหรือไม่จำแนกได้ 2 สมมติฐานดังนี้

- H0 : ไม่มีผลกระทบร่วมระหว่างปัจจัย (ตัวแปร) ทั้ง 2
 H1 : มีผลกระทบร่วมระหว่างปัจจัย (ตัวแปร) ทั้ง 2
 ถ้าปฏิเสธสมมดิฐาน H0 ต้องมีการทดสอบสมมติฐานต่อเนื่องอีก 1 สมมติฐาน
- H0 : ค่าเฉลี่ยของประชากรแต่ละกลุ่มในทุกๆ ระดับ(ของแต่ละช่อง) ไม่แตกต่างกัน
 H1 : มีอย่างน้อย 2 กลุ่มประชากรที่มีค่าเฉลี่ยแตกต่างกัน

หรือกำหนดเป็นสัญญาลักษณ์ทางสถิติดังนี้

H0: $\mu_{11} = \mu_{12} = \mu_{13} = \dots \mu_{mn}$

H1 : $\mu_{ijk} \neq \mu_{lmn}$ (ijk \neq lmm)

ตัวอย่าง ผู้วิจัยต้องการศึกษาก่าใช้จ่ายต่อวันของประชากรซึ่งจำแนกตาม อาชีพ และภาค โดยทำการสำรวจ ทุกอาชีพ และทุกจังหวัดในแต่ละภาค

การวิเคราะห์ข้อมูลจะใช้การวิเคราะห์ความแปรปรวนแบบจำแนก 2 ทางด้วยวิธีการพาราเมตริก ภายใต้ปัจจัย หรือตัวแปรอิสระ อาชีพ และภาค เป็นปัจจัยคงที่ สามารถกำหนคสมมติฐานสำหรับการทคสอบได้ 4 สมมติฐาน

- สำหรับตัวแบบค้านแถว คือ อาชีพ ซึ่งจำแนกได้ 3 กลุ่มอาชีพ
 H0 : ค่าใช้จ่ายเฉลี่ยของประชาชนแต่ละกลุ่มอาชีพไม่แตกต่างกัน
 H1 : มีอย่างน้อย 2 กลุ่มอาชีพที่ค่าใช้จ่ายเฉลี่ยของประชาชนแตกต่างกัน
- สำหรับตัวแบบค้านคอลัมน์ คือ ภาค ซึ่งจำแนกได้ 4 ภาค
 H0 : ค่าใช้จ่ายเฉลี่ยของประชาชนแต่ละภาคไม่แตกต่างกัน
 H1 : มีอย่างน้อย 2 ภาคที่ค่าใช้จ่ายเฉลี่ยของประชาชนแตกต่างกัน
- สำหรับผลกระทบร่วมจากทั้ง 2 ตัวแปร คือ อาชีพ และ ภาค
 H0 : ไม่มีผลกระทบร่วมระหว่างกลุ่มอาชีพและภาคต่อค่าใช้จ่ายเฉลี่ย
 H1 : มีผลกระทบร่วมระหว่างกลุ่มอาชีพและภาคต่อค่าใช้จ่ายเฉลี่ย
 ล้าปฏิเสธสมมติฐาน H0 แสดงว่าอาชีพและภาคมีผลกระทบต่อค่าใช้จ่าย สามารถที่จะทคสอบความ แตกต่างของค่าใช้จ่ายเฉลี่ยในส่วนต่างๆ แต่ละช่องภายใต้สมมติฐานนี้
- สำหรับผลกระทบจากทั้ง 2 ตัวแปร คือ อาชีพ และ ภาค
 H0 : ก่าใช้จ่ายเฉลี่ยของประชาชนแต่ละภาคและแต่ละอาชีพไม่แตกต่างกัน
 H1 : มีอย่างน้อย 2 กลุ่มภาคและอาชีพที่ก่าใช้จ่ายเฉลี่ยของประชาชนแตกต่างกัน

การใช้โปรแกรมเพื่อทดสอบความแตกต่างของค่าใช้จ่ายเฉลี่ยของประชาชนจำแนกตามอาชีพและภาค โดย การวิเคราะห์ความแปรปรวนแบบ 2 ทางด้วยวิธีการทดสอบแบบพาราเมตริก

- 1. เปิดไฟล์ DATA15A.sav
- 2. เลือกเมนู Analyze -> General Linear Model -> Univariate

🔲 Univariate				
	Dep.	endent Variable:	_	Model
	Fixed	d Factor(s):		Contrasts
		occup	^	Plots
		region	~	Post Hoc
	Ran	dom Factor(s):	_	Save
				Options
	Cove	ariate(s):		
		i Weight:	_	
1				
	aste Res	et Cancel	Help	
ลือกตัวแปร expense คลิกป่ม	💽 ເຄົ້າເໃວ້	ในบ๊อกซ์ Depend	lent Variable	<u>,</u>

เลือกตัวแปร occup, region คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Fixed Factor(s)

3. คลิกปุ่ม Options

Univariate: Options	×
Estimated Marginal Means Factor(s) and Factor Interactions: (OVERALL) occup region occup*region	Display Means for:
Display Descriptive statistics Estimates of effect size Observed power Parameter estimates Contrast coefficient matrix	Homogeneity tests Spread vs. level plot Residual plot Lack of fit General estimable function
Significance level: 1.05	Continue Cancel Help

เถือก Descriptive statistics

คลิกปุ่ม Continue

4. คลิกปุ่ม Plots

Univariate: Profile Plots 🛛 🔀					
Factors: occup region	▲▲	Horizontal Axis: Separate Lines: Separate Plots:	Continue Cancel Help		
Plots: Add		Change Remove			
occup*region					

เลือกตัวแปร occup คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Horizontal Axis

เลือกตัวแปร region กลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Separate Lines

คลิกปุ่ม Add

คลิกปุ่ม Continue

5. คลิกปุ่ม OK จะได้ผลลัพธ์

Tests of Between-Subjects Effects

Dependent Variab	ie: expense				
	Type III Sum			-	
Source	of Squares	dt	Mean Square	ŀ	Sig.
Corrected Model	1419.050 ^a	11	129.005	1.176	.336
Intercept	753351.444	1	753351.444	6865.979	.000
occup	879.747	2	439.874	4.009	.026
region	87.740	3	29.247	.267	.849
occup * region	464.068	6	77.345	.705	.647
Error	4169.450	38	109.722		
Total	773149.000	50			
Corrected Total	5588.500	49			
a B Catastrad – 054	(Selected D. Constant) - 020				

a. R Squared = .254 (Adjusted R Squared = .038)

แสดงก่าต่างๆ ของตารางวิเกราะห์กวามแปรปรวน เพื่อใช้ทดสอบสมมติฐานทางสถิติ ด้วยก่าสถิติ F และความน่าจะเป็นในการยอมรับสมมติฐาน Sig.

จากสมมติฐานทางสถิติ

- สมมติฐานสำหรับตัวแปรหรือปัจจัยที่ 1 คือ อาชีพ H0 : ค่าใช้ง่ายเฉลี่ยของประชาชนแต่ละกลุ่มอาชีพไม่แตกต่างกัน H1 : มีอย่างน้อย 2 กลุ่มอาชีพที่ค่าใช้จ่ายเฉลี่ยของประชาชนแตกต่างกัน
- 2. สมมติฐานสำหรับตัวแปรหรือปัจจัยที่ 2 คือ ภาค
 - H0 : ค่าใช้จ่ายเฉลี่ยของประชาชนแต่ละภาคไม่แตกต่างกัน
 - H1 : มีอย่างน้อย 2 ภาคที่ค่าใช้จ่ายเฉลี่ยของประชาชนแตกต่างกัน

3.	มมติฐานสำหรับผลกระทบร่วมของปัจจัยทั้ง 2 คือ อาชีพ และ ภาค
) : ไม่มีผลกระทบร่วมระหว่างกลุ่มอาชีพและภาคต่อค่าใช้จ่ายเฉลี่ย
	: มีผลกระทบร่วมระหว่างกลุ่มอาชีพและภาคต่อค่าใช้จ่ายเฉลี่ย
การเ	สินใจจะปฏิเสธสมมติฐาน H0 ถ้าค่า Asymp. Sig. น้อยกว่าค่า ที่ผู้วิจัยกำหนด
ป้จจ้	าชีพ ก่า Sig. ที่ได้ มีก่าน้อยกว่าก่า (0.026 < 0.05)
ป้จจ้	าค ค่า Sig. ที่ได้ มีค่ามากกว่าค่า (0.849 > 0.05)
ผลก	ทบร่วมอาชีพและภาค ค่า Sig. ที่ได้ มีค่ามากกว่าค่า (0.647 > 0.05)
การเ	สินใจ ปฏิเสธสมมติฐานของปัจจัยอาชีพ
	ยอมรับสมมติฐานของปัจจัยอาชีพ
	ยอมรับผลกระทบร่วมของทั้ง 2 ปัจจัยอาชีพและภาค
สรุป	ได้ว่า สำหรับปัจจัยอาชีพ มีอย่างน้อย 2 กลุ่มอาชีพที่ก่าใช้จ่ายเฉลี่ยของประชาชนแ ตกต่าง
กัน	
	สำหรับปัจจัยภาก ค่าใช้จ่ายเฉลี่ยของประชาชนแต่ละภาก ไม่แตกต่างกัน
	สำหรับผลกระทบร่วม ไ ม่ม ีผลกระทบร่วมระหว่างกลุ่มอาชีพและภาคต่อค่าใช้จ่าย

เฉลี่ย

ถ้าผลกระทบร่วม มีผลกระทบร่วมระหว่างกลุ่มอาชีพและภาคต่อค่าใช้จ่ายเฉลี่ย ต้องทอสอบต่อ โดยใช้ค่าสถิติที่อยู่ในปุ่ม Post Hoc เพื่อทดสอบสมมติฐานสำหรับผลกระทบจากทั้ง 2 ตัวแปร คือ อาชีพ และ ภาค ดังนี้

H0 : ค่าใช้จ่ายเฉลี่ยของประชาชนแต่ละภาคและแต่ละอาชีพไม่แตกต่างกัน

H1 : มีอย่างน้อย 2 กลุ่มภาคและอาชีพที่ค่าใช้จ่ายเฉลี่ยของประชาชนแตกต่างกัน

Estimated Marginal Means of expense

แสดงกราฟเส้นของตัวแปรที่ต้องการทคสอบ คือตัวแปรค่าใช้จ่าย กราฟที่แสดงใช้ค่าเฉลี่ยโดยประมาณมา แสดงจำแนกตามตัวแปรอาชีพ คือแกนนอน ตัวแปรภาค คือเส้นกราฟ แกนตั้งคือค่าใช้จ่ายเฉลี่ย

การพิจารณากราฟที่ได้

ถ้ากราฟเส้นมีลักษณะเป็นเส้นแบบขนานกัน แสดงว่า 2 ปัจจัยนั้น**ไม่มีผลกระทบร่วมต่อกัน** ถ้ากราฟเส้นมีลักษณะเป็นเส้นแบบ**ไม่**ขนานกัน แสดงว่า 2 ปัจจัยนั้น<mark>มีผลกระทบร่วมต่อกัน</mark> จากรูปกราฟลักษณะของเส้นเกือบจะขนานกัน อาจสรุปได้ว่าปัจจัยอาชีพและภาคไม่มีผลกระทบร่วมกันต่อ ก่าใช้จ่ายเฉลี่ย (เป็นการพิจารณาโดยประมานอาจเกิดข้อผิดพลาดได้)

การวิเคราะห์ความแปรปรวนจำแนก 2 ทางแบบน็อนรพาราเมตริก

```
(Two-Way Analysis of variances by NON-Parametric Method)
```

เป็นวิธีการการวิเคราะห์ข้อมูลทางสถิติที่ใช้กับข้อมูลไม่สามารถใช้วิธีการของพาราเมตริกได้ **ลักษณะของข้อมูล** คือ ข้อมูลแต่ละกลุ่มจะต้องไม่เป็นอิสระต่อกันหรือต้องมีความสัมพันธ์ ตัวอย่าง ผู้วิจัยต้องการทดสอบความพึงพอใจของผู้ชมโทรทัศน์ยี่ห้อต่างๆ 4 ยี่ห้อ และให้คะแนน

ความพึงพอใจที่มีระดับคะแนน 1 ถึง 5 รวมคะแนนทั้งหมด 10 คะแนน กำหนดสมมติฐานทางสถิติ

H0 : ระดับความพึงพอใจเฉลี่ยต่อ โทรทัศน์ทั้ง 4 ยี่ห้อไม่แตกต่างกัน

H1 : มีอย่างน้อย 2 ยี่ห้อที่มีระดับความพึงพอใจเฉลี่ยแตกต่างกัน

การใช้โปรแกรมการวิเคราะห์ความแปรปรวนจำแนก 2 ทางแบบน็อนรพาราเมตริก

- 1. เปิดไฟล์ DATA15B.sav
- 2. เถือกเมนู Analyze -> Nonparametric Test -> K Related Samples

Tests for Several Re	elated Samples			
	Test Variables:	OK Paste Reset Cancel Help		
Test Type Friedman Kendall's W Cochran's Q Statistics				

เลือกตัวแปร brand1,brand2,brand3,brand4 คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Test Variables

3. คลิกปุ่ม Statistics

เลือก Descriptive

คลิกปุ่ม Continue

คลิกปุ่ม OK จะได้ผลลัพธ์ Friedman Test

Ranks		
	Mean Rank	
brand1	2.00	
brand2	3.50	
brand3	1.50	
brand4	3.00	

Test Statistics^a

N	5
Chi-Square	7.979
df	3
Asymp. Sig.	.046

a. Friedman Test

Rank แสดงระดับกวามพึงพอใจเฉลี่ยของอันดับในแต่ละกลุ่ม

Test Statistics แสดงค่าสถิติของ Freidman สำหรับทดสอบสมมติฐานทางสถิติ ค่าที่จะนำมาพิจารณา

คือ ก่ากวามน่าจะเป็นในการยอมรับสมมติฐาน Asymp. Sig.

การตัดสินใจจะปฏิเสชสมมติฐาน H0 ถ้าค่า Asymp. Sig. น้อยกว่าค่า ที่ผู้วิจัยกำหนด

ค่า Asymp. Sig. ที่ได้ มีค่าน้อยกว่าค่า (0.046 < 0.05)

การตัดสินใจ ปฏิเสธสมมติฐาน H0 ยอมรับสมมติฐาน H1

สรุปผลได้ว่า มีอย่างน้อย 2 ยี่ห้อที่มีระดับความพึงพอใจเฉลี่ยแตกต่างกันที่ระดับนัยสำคัญ 0.05

ถ้าผู้วิจัยอยากทราบว่ามียี่ห้อใดที่มีระดับความพึงพอใจแตกต่างกัน จะต้องทำการทดสอบแบบจับคู่โดย

วิธีของ Wilcoxon Sign Rank Test ต่อ

การทดสอบค่าสัดส่วน

การทดสอบค่าสัดส่วนสำหรับ 1 กลุ่มตัวอย่าง

กรณีที่ผู้วิจัยต้องการศึกษาโดยการตรวจสอบว่า**คุณลักษณะของข้อมูล**มีจำนวนเป็นไปตามที่คาดหวังหรือไม่ การทดสอบจะไม่ทำการทดสอบจำนวนโดยตรงแต่จะทำการทดสอบในรูปของสัดส่วน การทดสอบจำนวนเหมือนกันและถือว่าเป็นการทดสอบแบบน็อนพาราเมตริกอีกวิธีหนึ่ง ประเภทของการวิเคราะห์ข้อมูลแบบ 1 ตัวแปร (Univariate) มี 2 ประเภท การทดสอบสัดส่วนกรณีที่ข้อมูลมีก่าเป็นไปได้ 2 ก่า

การทคสอบสัคส่วนกรณีที่ข้อมูลมีค่าเป็นไปได้ ตั้งแต่ 2 ค่าขึ้นไป

การทดสอบสัดส่วนกรณีที่ข้อมูลมีค่าเป็นไปได้ 2 ค่า

หมายถึงข้อมูลที่นำมาทคสอบจะต้องสามารถจำแนกประชากรที่จะศึกษาได้เพียง 2 ค่า (ประเภท) เท่านั้น

ซึ่งเรียกว่าข้อมูลประเภทนี้ว่า ข้อมูลมีการแจกแจงแบบทวินาม (Binomial Distribution) เช่น เพศมี 2 เพศ การกำหนดสมมติฐานทางสถิติ

สมมติฐานแบบสองทาง

	H0 : สัคส่วนของประชากรไม่แตกต่างจากก่าที่กำหนด	หรือ H0 :	=	0
	H1 : สัคส่วนของประชากรแตกต่างจากค่าที่กำหนด หรือ H1	: ≠ ₀		
สม	มติฐานแบบทางเดียว			
	H0 : สัคส่วนของประชากรมากกว่าหรือเท่ากับค่าที่กำหนด	หรือ H0 :		0
	H1 : สัดส่วนของประชากรน้อยกว่าค่าที่กำหนด	หรือ H1 :	<	0
	H0 : สัคส่วนของประชากรน้อยกว่าหรือเท่ากับค่าที่กำหนด	หรือ H0 :		0
	H1 : สัคส่วนของประชากรมากกว่าค่าที่กำหนด	หรือ H1 :	>	0
	คือ ค่าสัคส่วนประชากรที่สนใจจะทคสอบ			
(ู คือ ก่าสัดส่วนที่ผู้วิจัยกำหนดเพื่อการทดสอบ			

ตัวอย่าง ผู้วิจัยต้องการทดสอบการผลิตสินค้าชนิดหนึ่งต้องได้สินค้าได้มาตรฐานไม่ต่ำกว่า 90% หรือไม่ ค่าข้อมูล 1 ได้มาตรฐาน 0 ไม่ได้มาตรฐาน

สมมติฐานทางสถิติสำหรับการทดสอบกำหนดดังนี้
 H0 : จำนวนสินค้าที่ได้มาตรฐานมีมากกว่าหรือเท่ากับ 90% หรือ H0 : 0.90
 H1 : จำนวนสินค้าที่ได้มาตรฐานมีน้อยกว่า 90% หรือ H1 : < 0.90
 การใช้โปรแกรมเพื่อทดสอบสัดส่วนเมื่อข้อมูลมีค่าเป็นไปได้ 2 ค่า
 1. เปิดไฟล์ DATA16A.sav

2. เถือกเมนู Analyze -> Nonparametric Test -> Binomial

Binomial Test			
	•	Test Variable List:	OK Paste Reset Cancel Help
Oefine Dichotomy Get from data Cut point:		Test Proportion: .90	Options

เลือกตัวแปร product คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Test Variable List

Test Proportion พิมพ์ 90

3. คลิกปุ่ม OK จะได้ผลลัพธ์

NPar Tests

		Category	N	Observed Prop.	Test Prop.	Asymp. Sig. (1-tailed)
product	Group 1	1	25	.8	.9	.175 ^{a,b}
	Group 2	0	5	.2		
	Total		30	1.0		

Binomial Test

a. Alternative hypothesis states that the proportion of cases in the first group < .9.

b. Based on Z Approximation.

Category	ค่าที่ใช้แทนแต่ละประเภทของข้อมูล
Observed Prop.	ค่าสัดส่วนของแต่ละประเภท
Test Prop.	ค่าสัคส่วนที่ผู้วิจัยกำหนดเพื่อการทดสอบ
Asymp. Sig. (1-tailed)	ค่าความน่าจะเป็นของตัวทคสอบที่กำนวณมาจากก่า Z

การตัดสินใจจะปฏิเสธสมมติฐาน H0 ถ้าค่า Asymp. Sig. น้อยกว่าค่า ที่ผู้วิจัยกำหนดมาก่อน

ค่า Asymp. Sig. ที่ได้ มีค่ามากกว่าค่า (0.175 > 0.05)

การตัดสินใจ ยอมรับสมมติฐาน H0

สรุปผลได้ว่า สินก้าที่ผลิตมีสัดส่วนได้มาตรฐานไม่ต่ำกว่า 90% ที่ระดับนัยสำคัญ 0.05

การทดสอบสัดส่วนกรณีที่ข้อมูลมีค่าเป็นไปได้ ตั้งแต่ 2 ค่าขึ้นไป

การทดสอบ**สัดส่วน**ข้อมูลที่มีค่าเป็นไปได้ ตั้งแต่ 2 ค่าขึ้นไป สามารถทดสอบในรูป**อัตราส่วน**ได้ การทดสอบจะใช้วิธีทดสอบของ Chi-Square : ² เป็นการทดสอบความแตกต่างระหว่าจำนวนหรือ ความถี่ที่ได้จากการสังเกต (Observed Frequency) กับ ความถี่ที่คาดหวังว่าจะเป็น (Expected Frequency) หรือ ความถี่ตามทฤษฎี

การทคสอบสัคส่วนหลายกลุ่มจาก 1 กลุ่มตัวอย่าง	การทคสอบสัคส่วนหลายกลุ่มจาก k กลุ่ม
	ตัวอย่าง
1. ข้อมูลเลือกมาจากประชากรเพียง 1 กลุ่ม	1. ข้อมูลเลือกมาจากประชากรหลายกลุ่ม
2. ข้อมูลที่ถูกจำแนกเป็นประเภทหรือกลุ่มที่เกิดจากตัว	2. ข้อมูลแต่ละกลุ่มเกิดจากการเก็บข้อมูลแขกกัน
แปรที่มีค่าเป็นไปได้หลายค่านั้นมีความสัมพันธ์กัน	มาแต่ด้นและไม่เกี่ยวข้องกันหรือเป็นอิสระต่อ
	กัน
3. ถ้าขอมรับสมมติฐาน H0 หมายความว่า สัดส่วนใน	3. ถ้าขอมรับสมมติฐาน H0 หมายความว่า
แต่ละประเภทมีค่าไม่แตกต่างกัน	สัดส่วนในแต่ละกลุ่มมีค่าไม่แตกต่างกัน

ตัวอย่าง ผู้วิจัขกิดว่าขอดขายโทรทัศน์ขี่ห้อต่างๆ ต่อเดือนกือ Sony, Samsung, อื่นๆ น่าจะเป็นอัตราส่วน 5:3:2

ค่าขอตัวแปร 1 Sony 2 Samsung 3 อื่นๆ

สมมติฐานทางสถิติสำหรับการทคสอบกำหนคคังนี้

H0 : ยอดขายยี่ห้อ Sony, Samsung, อื่นๆ เป็นอัตราส่วน 5:3:2

H1 : ยอดขายยี่ห้อ Sony, Samsung, อื่นๆ ไม่เป็นอัตราส่วน 5:3:2

การใช้โปรแกรมเพื่อทดสอบอัตราส่วนเมื่อข้อมูลมีค่าเป็นไปได้ตั้งแต่ 2 ค่าขึ้นไปสำหรับ 1 กลุ่มตัวอย่าง

- 1. เปิดไฟล์ DATA16B.sav
- 2. เลือกเมนู Analyze -> Nonparametric Test -> Chi-Square

Chi-Square Test		
	Test Variable List:	OK Paste Reset Cancel
Expected Range	Expected Values	Help
 Get from data 	C All categories equal	
O Use specified range	Values:	
Lower:	Add 5	
Upper:	Change 2	
	Remove	Options

เลือกตัวแปร product คลิกปุ่ม 🕩 เก็บไว้ในบ๊อกซ์ Test Variable List

Values พิมพ์ 5 คลิกปุ่ม Add

พิมพ์ 3 คลิกปุ่ม Add

พิมพ์ 2 คลิกปุ่ม Add

3. คลิกปุ่ม OK จะได้ผลลัพธ์

brand

	Observed N	Expected N	Residual
1	26	20.0	6.0
2	10	12.0	-2.0
3	4	8.0	-4.0
Total	40		

Test Statistics

	brand
Chi-Square ^a	4.133
df	2
Asymp. Sig.	.127

a. 0 cells (.0%) have expected frequencies less than

5. The minimum expected cell frequency is 8.0.

Observed N	จำนวนหรือความถี่ของข้อมูลที่เก็บรวบรวมมาจำแนกตามก่าที่เป็นไปได้
Expected N	จำนวนหรือกวามถี่ที่กาดหวังตามก่าที่เป็นไปได้
Residual	ผลต่างของความถี่ทั้ง 2 ถ้ามีค่ามากแสดงว่าข้อมูลที่เก็บมาไม่เป็นไปตามที่คาดหวัง

Test Statistics

Chi-Square	ค่าสถิติ Chi-Square
Asymp. Sig.	ค่าความน่าจะเป็นใช้ในการขอมรับสมมติฐาน

การตัดสินใจจะปฏิเสธสมมติฐาน H0 ถ้าค่า Asymp. Sig. น้อยกว่าค่า ที่ผู้วิจัยกำหนดมาก่อน

ค่า Asymp. Sig. ที่ได้ มีค่ามากกว่าค่า (0.127 > 0.05)

การตัดสินใจ ยอมรับสมมติฐาน H0

สรุปผลได้ว่า ขอดขายยี่ห้อ Sony, Samsung, อื่นๆ เป็นอัตราส่วน 5:3:2 ที่ระดับนัยสำคัญ 0.05

การทดสอบค่าสัดส่วนสำหรับหลายกลุ่มตัวอย่างที่เป็นอิสระต่อกัน

เป็นการทคสอบค่าสัคส่วนกรณีข้อมูลของแต่ละกลุ่มมีเพียง 2 ค่า

การทดสอบจะใช้วิธีทดสอบของ Chi-Square :

ตัวอย่าง จากการสำรวจผู้ที่ชอบรายการ โทรทัศน์รายการหนึ่งในแต่ละภาคมีสัดส่วนต่างกันหรือไม่

ค่าตัวแปร 1 ชอบ 0 ไม่ชอบ

สมมติฐานทางสถิติสำหรับการทคสอบกำหนคคังนี้

H0 : จำนวนผู้ที่ชอบรายการ โทรทัศน์แต่ละภาคมีสัคส่วนไม่แตกต่างกัน

H1 : จำนวนผู้ที่ชอบรายการ โทรทัศน์แต่ละภากมีสัคส่วนแตกต่างกัน

การใช้โปรแกรมเพื่อทดสอบค่าสัดส่วนของข้อมูลหลายกลุ่มตัวอย่างเป็นอิสระกัน

- 1. เปิดไฟล์ DATA17A.sav
- 2. เถือกเมนู Analyze -> Descriptive -> Crosstabs

Crosstabs		
	Row(s): Column(s):	OK Paste Reset Cancel
	Layer 1 of 1 Previous Next	
 Display clustered bar cha Suppress tables 	irts	
	Statistics Cells Formal	t

เลือกตัวแปร test กลิกปุ่ม 🚺 เก็บไว้ในบ๊อกซ์ Row(s)

เลือกตัวแปร region คลิกปุ่ม 🚺 เก็บไว้ในบ๊อกซ์ Column(s)

3. คลิกปุ่ม Statistics

Crosstabs: Statistics		
 Chi-square Nominal Contingency coefficient Phi and Cram?r's V Lambda Uncertainty coefficient Nominal by Interval Eta Cochran's and Mantel-Haens Test common odds ratio equipation 	Correlations Ordinal Gamma Somers' d Kendall's tau-b Kendall's tau-c Kappa Risk McNemar szel statistics rais: 1	Continue Cancel Help

เลือก Chi-square

คลิกปุ่ม Continue

4. คลิกปุ่ม Cells

Crosstabs: Cell Di	splay 🔀
Counts Counts	Continue Cancel Help
Percentages Row Column Total	Residuals Unstandardized Standardized Adjusted standardized
Noninteger Weights Round cell cou Truncate cell co No adjustments	unts C Round case weights counts C Truncate case weights s

เลือก Expected

คลิกปุ่ม Continue

5. คลิกปุ่ม OK จะได้ผลลัพธ์

Asymp. Sig. Value (2-sided) df Pearson Chi-Square .833^a 3 .841 Likelihood Ratio .840 .840 3 Linear-by-Linear .081 1 .776 Association N of Valid Cases 4N

Chi-Square Tests

a. 4 cells (50.0%) have expected count less than 5. The minimum expected count is 4.00.

การตัดสินใจจะปฏิเสธสมมติฐาน H0 ถ้าค่า Asymp. Sig. (2-sided)น้อยกว่าค่า ที่ผู้วิจัยกำหนดมา ก่อน คือ 0.05

ค่า Asymp. Sig. (2-sided) ที่ได้ มีค่ามากกว่าค่า (0.841 > 0.05)

การตัดสินใจ ยอมรับสมมติฐาน H0

้สรุปผลได้ว่า จำนวนผู้ที่ชอบรายการโทรทัศน์แต่ละภาคมีสัดส่วนไม่แตกต่างกัน ที่ระดับนัยสำคัญ 0.05

การทดสอบค่าสัดส่วนสองกลุ่มตัวอย่างที่มีความสัมพันธ์กัน

เป็นการทคสอบก่าสัคส่วนของ 2 กลุ่มตัวอย่าง ข้อมูลแต่ละกลุ่มมีก่าเพียง 2 ก่า ข้อมูลทั้ง 2 กลุ่มมีกวาม สมพันธ์กัน

การทคสอบจะใช้วิธีทคสอบของ Mcnemar และเป็นการทคสอบแบบน็อนพาราเมตริก

ถ้าข้อมูลตัวอย่างมีขนาคใหญ่ ข้อมูลจะมีการแจกแจงใกล้เกียงแบบปกติจะใช้วิธีทคสอบ Chi-Square : 2

ตัวอย่าง จากการสอบถามความพอใจของผู้ใช้บริการของรถไฟก่อนและหลังการปรับปรุงการให้บริการ

ค่าตัวแปร 1 พอใจ 2 ไม่พอใจ

สมมติฐานทางสถิติสำหรับการทคสอบกำหนคคังนี้

```
H0 : สัดส่วนของผู้ตอบว่า พอใจ ก่อนและหลังการปรับปรุงไม่แตกต่างกัน หรือ H0 : _1 = _2
```

H1 : สัคส่วนของผู้ตอบว่า พอใจ ก่อนและหลังการปรับปรุงแตกต่างกัน หรือ H1 : ₁≠ **П** ₂

การใช้โปรแกรมเพื่อทดสอบค่าสัดส่วนของข้อมูล 2 กลุ่มตัวอย่างที่มีความสัมพันธ์กัน

สามารถทำได้ 2 วิธี

Analyze -> Descriptive Statistics -> Crosstabs คลิกปุ่ม Statistics เลือก McNemer

Analyze -> Nonparametric Tests -> 2 Related Samples

- 1. เปิดไฟล์ DATA17B.sav
- เลือกเมนู Analyze -> Descriptive Statistics -> Crosstabs

Crosstabs		
	Row(s):	ок
	De pre	Paste
	Colump(s):	Reset
	ecolumn(s).	Cancel
		Help
	Layer 1 of 1]
	Previous Next	
) Display clustered bar ch	arts	
Suppress tables		
	Statistics Cells Format	
เลือกตัวแปร pre คลิกปุ่ม 🕩	เก็บไว้ในบ๊อกซ์ Row(s)	
เลือกตัวแปร post คลิกปุ่ม	🗾 เก็บไว้ในบ๊อกซ์ Column(s)	

3. คลิกปุ่ม Statistics

Crosstabs: Statistics		×
 Chi-square Nominal Contingency coefficient Phi and Cram?r's V Lambda Uncertainty coefficient Nominal by Interval Eta Cochran's and Mantel-Haen Test common odds ratio equal 	Correlations Ordinal Gamma Somers' d Kendall's tau-b Kendall's tau-c Kappa Risk McNemar szel statistics rais: 1	Continue Cancel Help

เลือก McNemar

คลิกปุ่ม Continue

4. คลิกปุ่ม OK จะได้ผลลัพธ์

pre * post Crosstabulation

Count

		ро	post	
		1	2	Total
рге	1	3	7	10
	2	19	1	20
Total		22	8	30

Chi-Square Tests

		Exact Sig.
	Value	(2-sided)
McNemar Test		.029 ^a
N of Valid Cases	30	

a. Binomial distribution used.

Exact Sig. (2-sided) คือ ค่าความน่าจะเป็นในการขอมรับสมมติฐาน

การตัดสินใจจะปฏิเสธสมมติฐาน H0 ถ้าค่า Asymp. Sig. (2-sided)น้อยกว่าค่า ที่ผู้วิจัยกำหนด มาก่อน คือ 0.05

ค่า Asymp. Sig. (2-sided) ที่ได้ มีค่าน้อบกว่าค่า (0.029 < 0.05)

การตัดสินใจ ปฏิเสธสมมติฐาน H0

สรุปผลใด้ว่า สัคส่วนของผู้ตอบว่า พอใจ ก่อนและหลังการปรับปรุงแตกต่างกัน

จำนวนผู้ที่พึงพอใจก่อนและหลังการปรับปรุงแตกต่างกัน จะต้องแปลความหมายต่อไปว่า แตกต่าง กันในทางที่ดีหรือแย่ลง โดยพิจารณาตัวเลขจากตาราง pre * post Crosstabulation จำนวนผู้พอใจก่อน ปรับปรุงมี 10 คน จำนวนผู้พอใจหลังปรับปรุงมี 22 คน ดังนั้นสามารถสรุปได้ว่าการปรับปรุงการ ให้บริการจะมีผลทำให้ผู้ใช้บริการเปลี่ยนทัศนคติต่อความพึงพอใจทำให้พอใจมากขึ้น